Как начертить фигуру в изометрии. Черчение. Этапы выполнения наглядного изображения детали

Подписаться
Вступай в сообщество «lenew.ru»!
ВКонтакте:

В ряде случаев построение аксонометрических проекций удобнее начинать с построения фигуры основания. Поэтому рассмотрим, как изображают в аксонометрии плоские геометрические фигуры , расположенные горизонтально.

1. квадрата показано на рис. 1, а и б.

Вдоль оси х откладывают сторону квадрата а, вдоль оси у - половину стороны а/2 для фронтальной диметрической проекции и сторону а для изометрической проекции. Концы отрезков соединяют прямыми.

Рис. 1. Аксонометрические проекции квадрата:

2. Построение аксонометрической проекции треугольника показано на рис. 2, а и б.

Симметрично точке О (началу осей координат) по оси х откладывают половину стороны треугольника а/ 2, а по оси у - его высоту h (для фронтальной диметрической проекции половину высоты h/2 ). Полученные точки соединяют отрезками прямых.

Рис. 2. Аксонометрические проекции треугольника:

а - фронтальная диметрическая; б - изометрическая

3. Построение аксонометрической проекции правильного шестиугольника показано на рис. 3.

По оси х вправо и влево от точки О откладывают отрезки, равные стороне шестиугольника . По оси у симметрично точке О откладывают отрезки s/2 , равные половине расстояния между противоположными сторонами шестиугольника (для фронтальной диметрической проекции эти отрезки уменьшают вдвое). От точек m и n , полученных на оси у , проводят вправо и влево параллельно оси х отрезки, равные половине стороны шестиугольника. Полученные точки соединяют отрезками прямых.


Рис. 3. Аксонометрические проекции правильного шестиугольника:

а - фронтальная диметрическая; б - изометрическая

4. Построение аксонометрической проекции окружности .

Фронтальная диметрическая проекция удобна для изображения предметов с криволинейными очертаниями, подобных представленными на рис. 4.

Рис.4. Фронтальные диметрические проекции деталей

На рис. 5. дана фронтальная диметрическая проекция куба с вписанными в его грани окружностями. Окружности , расположенные на плоскостях, перпендикулярных к осям х и z, изображаются эллипсами . Передняя грань куба, перпендикулярная к оси у, проецируется без искажения, и окружность, расположенная на ней, изображается без искажения, т. е. описывается циркулем.

Рис.5. Фронтальные диметрические проекции окружностей, вписанных в грани куба

Построение фронтальной диметрической проекции плоской детали с цилиндрическим отверстием .

Фронтальную диметрическую проекцию плоской детали с цилиндрическим отверстием выполняют следующим образом.

1. Строят очертания передней грани детали, пользуясь циркулем (рис. 6, а).

2. Через центры окружности и дуг параллельно оси у проводят прямые, на которых откладывают половину толщины детали. Получают центры окружности и дуг, расположенных на задней поверхности детали (рис. 6, б). Из этих центров проводят окружность и дуги, радиусы которых должны быть равны радиусам окружности и дуг передней грани.

3. Проводят касательные к дугам. Удаляют лишние линии и обводят видимый контур (рис. 6, в).

Рис. 6. Построение фронтальной диметрической проекции детали с цилиндрическими элементами

Изометрические проекции окружностей .

Квадрат в изометрической проекции проецируется в ромб . Окружности, вписанные в квадраты, например, расположенные на гранях куба (рис. 7), в изометрической проекции изображаются эллипсами. На практике эллипсы заменяют овалами, которые вычерчивают четырьмя дугами окружностей.

Рис. 7. Изометрические проекции окружностей, вписанных в грани куба

Построение овала, вписанного в ромб.

1. Строят ромб со стороной, равной диаметру изображаемой окружности (рис. 8, а). Для этого через точку О проводят изометрические оси х и у, и на них от точки О откладывают отрезки, равные радиусу изображаемой окружности. Через точки a, b , с и d проводят прямые, параллельные осям; получают ромб. Большая ось овала располагается на большой диагонали ромба.

2. Вписывают в ромб овал . Для этого из вершин тупых углов (точек А и В ) описывают дуги радиусом R , равным расстоянию от вершины тупого угла (точек А и В ) до точек a, b или с, d соответственно. От точки В к точкам а и b проводят прямые (рис. 8, б); пересечение этих прямых с большей диагональю ромба дает точки С и D , которые будут центрами малых дуг; радиус R 1 малых дуг равен Са (Db ). Дугами этого радиуса сопрягают большие дуги овала.

Рис. 8. Построение овала в плоскости, перпендикулярной оси z.

Так строят овал, лежащий в плоскости, перпендикулярной к оси z (овал 1 на рис. 7). Овалы, находящиеся в плоскостях, перпендикулярных к осям х (овал 3) и у (овал 2), строят так же, как овал 1., только построение овала 3 ведут на осях у и z (рис. 9, а), а овала 2 (см. рис. 7) - на осях х и z (рис. 9, б).


Рис. 9. Построение овала в плоскостях, перпендикулярных осям х и у

Построение изометрической проекции детали с цилиндрическим отверстием .

Если на изометрической проекции детали нужно изобразить сквозное цилиндрическое отверстие, просверленное перпендикулярно передней грани, представленное на рисунке. 10, а.

Построения выполняет следующим образом.

1. Находят положение центра отверстия на передней грани детали. Через найденный центр проводят изометрические оси. (Для определения их направления удобно воспользоваться изображением куба на рис. 7.) На осях от центра откладывают отрезки, равные радиусу изображаемой окружности (рис. 10, а).

2. Строят ромб , сторона которого равна диаметру изображаемой окружности; проводят большую диагональ ромба (рис. 10, б).

3. Описывают большие дуги овала; находят центры для малых дуг (рис. 10, в).

4. Проводят малые дуги (рис. 10, г).

5. Строят такой же овал на задней грани детали и проводят касательные к обоим овалам (рис. 10, д).


Рис. 10. Построение изометрической проекции детали с цилиндрическим отверстием

5.5.1. Общие положения. Ортогональные проекции объекта дают полное представление о его форме и размерах. Однако очевидным недостатком таких изображений является их малая наглядность – образная форма слагается из нескольких изображений, выполненных на разных плоскостях проекций. Только в результате опыта развивается умение представлять себе форму объекта – «читать чертежи».

Затруднения при чтении изображений в ортогональных проекциях обусловили возникновение ещё одного метода, который должен был объединить простоту и точность ортогональных проекций с наглядностью изображения,– метода аксонометрических проекций.

Аксонометрической проекцией называют наглядное изображение, получаемое в результате параллельного проецирования предмета вместе с осями прямоугольных координат, к которым он отнесен в пространстве, на какую-либо плоскость.

Правила выполнения аксонометрических проекций устанавливаются ГОСТ 2.317-69.

Аксонометрия (от греческого axon – ось, metreo – мерю) – процесс построения, основанный на воспроизведении размеров предмета по направлениям трёх его осей – длины, ширины, высоты. В результате получается объёмное изображение, воспринимаемое как осязаемая вещь (рис. 56б), в отличие от нескольких плоских изображений, не дающих образной формы предмета (рис. 56а).

Рис. 56. Наглядное изображение аксонометрии

В практической работе аксонометрические изображения применяются для различных целей, поэтому были созданы различные их виды. Общим для всех видов аксонометрии является то, что за основу изображения любого предмета принимается то или иное расположение осей OX, OY, OZ , по направлению которых определяют размеры предмета – длину, ширину, высоту.

В зависимости от направления проецирующих лучей по отношению к картинной плоскости, аксонометрические проекции подразделяются на:

а) прямоугольные – проецирующие лучи перпендикулярны картинной плоскости (рис. 57а);

б) косоугольные – проецирующие лучи наклонены к картинной пло­скости (рис. 57б).

Рис. 57. Прямоугольная и косоугольная аксонометрия

В зависимости от положения предмета и осей координат относительно плоскостей проекций, а также в зависимости от направления проециро­вания единицы измерения проецируются в общем случае с искажением. Искажаются и размеры проецируемых предметов.

Отношение длины аксонометрической единицы к ее истинной вели­чине называют коэффициентом искажения для данной оси.

Аксонометрические проекции называют: изометрическими , если коэф­фициенты искажения по всем осям равны (х= у= z ); диметрическими, если коэффициенты искажения равны по двум осям(x=z );триметрическими, если коэффициенты искажения различны.

Для аксонометрических изображений предметов применяют пять видов аксонометрических проекций, установленных ГОСТ 2.317 – 69:

прямоугольные изометрические и диметрические;

косоугольные фронтальные диметрические, фронтальныеизомет­рические , горизонтальные изометрические.

Имея ортогональные проекции любого предмета, можно построить его аксонометрическое изображение.

Всегда необходимо выбирать из всех видов лучший вид данного изо­бражения – тот, который обеспечивает хорошую наглядность и простоту построения аксонометрии.

5.5.2. Общий порядок построения. Общий порядок построения любого вида аксонометрии сводится к следующему:

а) выбирают оси координат на ортогональной проекции детали;

б) строят эти оси в аксонометрической проекции;

в) строят аксонометрию полного изображения предмета, а затем и его элементов;

г) наносят контуры сечения детали и убирают изображение отсечённой части;

д) обводят оставшуюся часть и проставляют размеры.

5.5.3. Прямоугольная изометрическая проекция. Этот вид аксонометрической проекции широко распространён благо­даря хорошей наглядности изображений и простоте построений. В пря­моугольной изометрии аксонометрические оси OX, OY, OZ расположены под углами 120 0 одна к другой. Ось OZ вертикальна. Оси OX и OY удобно строить, откладывая с помощью угольника от горизонтали углы 30 0 . Поло­жение осей можно также определить, отложив от начала координат в обе стороны по пять произвольных равных единиц. Через пятые деления про­водят вниз вертикальные линии и откладывают на них по 3 такие же еди­ницы. Действительные коэффициенты искажения по осям равны 0,82. Что­бы упростить построение, применяют приведённый коэффициент, равный 1. В этом случае при построении аксонометрических изображений измере­ния предметов, параллельные направлениям аксонометрических осей, от­кладывают без сокращений. Расположение аксонометрических осей и по­строение прямоугольной изометрии куба, в видимые грани которого впи­саны окружности, показаны на рис. 58, а, б.

Рис. 58. Расположение осей прямоугольной изометрии

Окружности, вписанные в прямоугольную изометрию квадратов – трех видимых граней куба, – представляют собой эллипсы. Большая ось эллип­са равна 1,22 D , а малая – 0,71 D , где D – диаметр изображаемой окруж­ности. Большие оси эллипсов перпендикулярны соответствующим аксоно­метрическим осям, а малые оси совпадают с этими осями и с направле­нием, перпендикулярным плоскости грани куба (на рис. 58б – утолщенные штрихи).

При построении прямоугольной аксонометрии окружностей, лежащих в координатных или им параллельных плоскостях, руководствуются пра­вилом: большая ось эллипса перпендикулярна той координатной оси, ко­торая отсутствует в плоскости окружности.

Зная размеры осей эллипса и проекции диаметров, параллельных координатным осям, можно построить эллипс по всем точкам, соединяя их с помощью лекала.

Построение овала по четырём точкам – концам сопряжённых диамет­ров эллипса, расположенных на аксонометрических осях, показано на рис. 59.

Рис. 59. Построение овала

Через точкуО пересечения сопряжённых диаметров эллипса проводят горизонтальную и вертикальную прямые и из неё описывают окружность радиусом, равным половине сопряжённых диаметров АВ=СД . Эта окружность пересечёт вертикальную линию в точках 1 и 2 (центры двух дуг). Из точек 1, 2 проводят дуги окружностей радиусом R=2-А (2-D) или R=1-C (1-B) . Радиусом ОЕ делают засечки на горизонтальной прямой и получают еще два центра сопрягаемых дуг 3 и 4 . Далее соединяют центры 1 и 2 с центрами 3 и 4 линиями, которые в пересечении с дугами радиусомR дают точки сопряжений K, N, P, M. Крайние дуги проводят из центров 3 и 4 радиусом R 1 =3-М (4-N).

Построение прямоугольной изометрии детали, заданной её проекция­ми, производят в следующем порядке (рис. 60, 61).

1. Выбирают оси координат X, Y, Z на ортогональных проекциях.

2. Строят аксонометрические оси в изометрии.

3. Строят основание детали – параллелепипед. Для этого от начала координат по оси Х откладывают отрезки ОА и ОВ , соответственно равные отрезкам О 1 А 1 и О 1 В 1 , взятым с горизонтальной проекции детали, и получают точкиА и В , через которые проводят прямые, параллельные оси Y , и откладывают отрезки, равные половине ширины параллелепипеда.

Получают точки C, D, J, V , которые являются изометрическими проек­циями вершин нижнего прямоугольника, и соединяют их прямыми, па­раллельными оси Х . От начала координат О по оси Z откладывают отрезок ОО 1 , равный высоте параллелепипеда О 2 О 2 ´; через точку О 1 проводят оси Х 1 , Y 1 и строят изометрию верхнего прямоугольника. Вершины прямо­угольников соединяют прямыми, параллельными оси Z .

4. Строят аксонометрию цилиндра. По оси Z от О 1 откладывают отре­зок О 1 О 2 , равный отрезку О 2 ´О 2 ´´ , т.е. высоте цилиндра, и через точку О 2 проводят оси X 2 ,Y 2 . Верхнее и нижнее основания цилиндра являются окружностями, расположенными в горизонтальных плоскостях X 1 O 1 Y 1 и X 2 O 2 Y 2 ; строят их аксонометрические изображения – эллипсы. Очерковые образующие цилиндра проводят касательно к обоим эллипсам (парал­лельно оси Z ). Построение эллипсов для цилиндрического отверстия вы­полняют аналогично.

5. Строят изометрическое изображение ребра жёсткости. От точки О 1 по оси Х 1 откладывают отрезок О 1 Е=О 1 Е 1 . Через точку Е проводят прямую, параллельную оси Y , и откладывают в обе стороны отрезки, равные половине ширины ребра Е 1 К 1 и Е 1 F 1 . Из полученных точек К, Е, F параллельно оси Х 1 проводят прямые до встречи с эллипсом (точки Р, N, М ). Далее проводят прямые, параллельные оси Z (линии пересечения плоскостей ребра с поверхностью цилиндра), и на них откладывают отрезки РТ, MQ и NS , равные отрезкам Р 2 Т 2 , M 2 Q 2 , и N 2 S 2 . Точки Q, S, T соединяют и обводят по лекалу, а точки К, Т и F, Q соединяют прямыми.

6. Строят вырез части заданной детали, для чего проводят две секущие плоскости: одну через оси Z и Х , а другую – через оси Z и Y .

Первая секущая плоскость разрежет нижний прямоугольник паралле­лепипеда по оси Х (отрезок ОА ), верхний – по оси Х 1 , а ребро – по линиям EN и ES , цилиндры – по образующим, верхнее основание цилиндра – по оси Х 2 .

Аналогично вторая секущая плоскость разрежет верхний и нижний прямоугольники по осям Y и Y 1 , а цилиндры – по образующим, верхнее основание цилиндра – по оси Y 2 .

Плоские фигуры, полученные от сечения, заштриховываются. Для определения направления штриховки необходимо на аксонометрических осях отложить от начала координат равные отрезки, а затем концы их со­единить.


Рис. 60. Построение трех проекций детали

Рис. 61. Выполнение прямоугольной изометрии детали


Линии штриховки для сечения, расположенного в плоскости XOZ , будут параллельны отрезку 1-2 , а для сечения, лежащего в плоскости ZOY , – параллельны отрезку 2-3 . Удаляют все невидимые линии и обводят контурные линии. Изометрическую проекцию применяют в тех случаях, когда необходимо построить окружности в двух или трёх плоскостях, параллельных координатным осям.

5.5.4. Прямоугольная диметрическая проекция. Аксонометрические изображения, построенные прямоугольной димет­рии, обладают наилучшей наглядностью, однако построение изображений сложнее, чем в изометрии. Расположение аксонометрических осей в диметрии следующее: ось OZ направлена вертикально, а оси и OY составляют с горизонтальной линией, проведённой через начало координат (точка О ), углы, соответственно, 7º10´ и 41º25´. Положение осей можно также определить, отложив от начала координат в обе стороны по восемь равных отрезков; через восьмые деления проводят вниз линии и на левой вертикали откладывают один отрезок, а на правой – по семь отрезков. Соединив полученные точки с началом координат, определяют направление осей ОХ и ОУ (рис. 62).

Рис. 62. Расположение осей в прямоугольной диметрии

Коэффициенты искажения по осям ОХ , OZ равны 0,94, а по оси ОY – 0,47. Для упрощения в практике пользуются приведёнными коэффициентами искажения: по осям OX и OZ коэффициент равен 1, по оси ОY – 0,5.

Построение прямоугольной диметрии куба с окружностями, вписанными в три видимые его грани показано на рис. 62б. Окружности, вписанные в грани, представляют собой эллипсы двух видов. Оси эллипса, расположенного в грани, которая параллельна координатной плоскости XOZ , равны: большая ось – 1,06 D ; малая – 0,94 D , где D – диаметр окружности, вписанной в грань куба. В двух других эллипсах большие оси равны 1,06 D , а малые – 0,35 D .

Для упрощения построений можно заменить эллипсы овалами. На рис. 63 даны приёмы построения четырех центровых овалов, заменяющих эллипсы. Овал в передней грани куба (ромба) строится следующим образом. Из середины каждой стороны ромба (рис. 63а) проводят перпендикуляры до пересечения с диагоналями. Полученные точки 1-2-3-4 будут являться центрами сопрягающих дуг. Точки сопряжений дуг находятся посредине сторон ромба. Построение можно выполнить и другим способом. Из середин вертикальных сторон (точки N и M ) проводят горизонтальные прямые линии до пересечения с диагоналями ромба. Точки пересечения будут искомыми центрами. Из центров 4 и 2 проводят дуги радиусом R , а из центров 3 и 1 – радиусом R 1 .

Рис. 63. Построение окружности в прямоугольной диметрии

Овал, заменяющий два других эллипса, выполняют следующим образом (рис. 63б). Прямые LP и MN , проведенные через середины противоположных сторон параллелограмма, пересекаются в точке S . Через точку S проводят горизонтальную и вертикальную линии. Прямую LN , соединяющую середины смежных сторон параллелограмма, делят пополам, и через ее середину проводят перпендикуляр до пересечения его с вертикальной линией в точке 1 .

на вертикальной прямой откладывают отрезок S-2 = S-1 .Прямые2-М и 1-N пересекают горизонтальную прямую в точках 3 и 4 . Полученные точки 1 , 2, 3 и 4 будут центрами овала. Прямые 1-3 и 2-4 определяют точки сопряжения T и Q .

из центров 1 и 2 описывают дуги окружностей TLN и QPM , а из центров 3 и 4 – дуги MT и NQ . Принцип построения прямоугольной диметрии детали (рис. 64) аналогичен принципу построения прямоугольной изометрии, приведённой на рис. 61.

Выбирая тот или иной вид прямоугольной аксонометрической проекции, следует иметь в виду, что в прямоугольной изометрии поворот боковых сторон предмета получается одинаковым и поэтому изображение иногда оказывается не наглядным. Кроме того, часто диагональные в плане ребра предмета на изображении сливаются в одну линию (рис. 65б). Эти недостатки отсутствуют на изображениях, выполненных в прямоугольной диметрии (рис. 65в).

Рис. 64. Построение детали в прямоугольной диметрии

Рис. 65. Сравнение различных видов аксонометрии

5.5.5. Косоугольная фронтальная изометрическая проекция.

Аксонометрические оси располагаются следующим образом. Ось OZ - вертикальная, ось ОХ – горизонтальная, ось ОУ относительно горизон­тальной прямой расположена над углом 45 0 (30 0 , 60 0) (рис. 66а). По всем осям размеры откладывают без сокращений, в истинную величину. На рис. 66б показана фронтальная изометрия куба.

Рис. 66. Построение косоугольной фронтальной изометрии

Окружности, расположенные в плоскостях, параллельных фронтальной плоскости, изображаются в натуральную величину. Окружности, расположенные в плоскостях, параллельных горизонтальной и профильной плоскостям, изображаются в виде эллипсов.

Рис. 67. Деталь в косоугольной фронтальной изометрии

Направление осей эллипсов совпадает с диагоналями граней куба. Для плоскостей ХОY и ZОY величина большой оси равна 1,3 D , а малой – 0,54 D (D – диаметр окружности).

Пример фронтальной изометрии детали приведён на рис. 67.

ЗАДАНИЕ:

1) По заданным аксонометрическим проекциям (рисунок 6.2 – 6.21) построить комплексные чертежи трех моделей и нанести размеры.

2) Построить изометрию модели № 3 с вырезом ¼ части.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Для выполнения задания необходимо изучить темы «Построение изометрической проекции детали» и «Вырез одной четверти детали».

Комплексный чертеж модели строится так же, как и комплексный чертеж геометрических тел, так как модель можно мысленно разделить на отдельные простейшие геометрические элементы, которые представлять собой призмы, цилиндры, усеченные конусы и др. Изометрию модели выполняем в следующей последовательности:

1) Чертим координатные оси под углом 120 о.

2) Вычерчивание модели начинаем от горизонтальной плоскости, постепенно как бы надстраивая один элемент детали за другим, тонкими линиями. Длину модели откладываем по оси х , ширину по оси y , высоту по оси z . Все расстояния, параллельные координатным осям откладываются в натуральную величину, без искажения.

3) Находим центры окружностей, определяем в какой плоскости они расположены (в горизонтальной, фронтальной или профильной). Определяем направление больших и малых осей овалов и вычерчиваем их по заданным диаметрам.

4) Выполняем вырез передней четверти (рисунок 6.1), направляя две секущие плоскости по осям хz у. Удаляем часть модели

5) Удаляем вспомогательные линии, которые использовались при построениях, обводим контур модели сплошной основной линией и штрихуем сечения.

Рисунок 6.1 Вырез ¼ части модели


Рисунок 6.3 Модели № 1, 2, 3


Рисунок 6.5 Модели № 1, 2, 3


Рисунок 6.7 Модели № 1, 2, 3


Рисунок 6.9 Модели № 1, 2, 3

Рисунок 6.11 Модели № 1, 2, 3


Рисунок 6.13 Модели № 1, 2, 3


Рисунок 6.15 Модели № 1, 2, 3


Рисунок 6.17 Модели № 1, 2, 3


Рисунок 6.19 Модели № 1, 2, 3


Рисунок 6.21 Модели № 1, 2, 3

Графическая работа № 7

ТЕХНИЧЕСКИЙ РИСУНОК

ЗАДАНИЕ: выполнить технический рисунок модели в изометрии с вырезом передней четверти по заданному чертежу (рисунок 7.3 – 7.22).

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Технический рисунок выполняется от руки, без использования чертежных инструментов. Для выполнения работы необходимо изучить раздел «Техническое рисование».

При построении овала необходимо учитывать, что большая ось овала перпендикулярна малой оси. Длина большой оси овала примерно равна пяти отрезкам, а длина малой - трем отрезкам (рис. 7.1).

а) б) в) г) д) е)

Рисунок 7.1 Построение овалов в изометрии

Если овал рас­положен в горизонтальной плоскости, то малая ось овала совпадает с осью z (рис. 7.1, а). Если овал расположен в профильной плоскости, то малая ось овала совпадает с осью х (рис. 7.1, в). Если овал рас­положен в горизонтальной плоскости, то малая ось овала совпадает с осью y (рис. 7.1, д).

Рисунок цилиндра начинаем с проведения аксономе­трических осей. Затем строим два основания в виде овалов и проводим образующие, каса­тельные к овалам (рис. 7.1, б, г, е).

Штриховка наносится исходя из заданного направления света. На рисунке 7.2 свет падает сверху, слева, сзади. Горизонтальные поверхности наиболее светлые, так как на них падает максимальное количество света. Вертикальные поверхности темнее горизонтальных. Чем больше отвернута вертикальная плоскость от светового потока, тем она темнее.

Для придания объема цилиндрическим и конусным поверхностям выполняется постепенный переход от более темных краев к светлой середине. Посередине оставляется светлая не заштрихованная полоса, которая называется «бликом» (рис. 7.2).

Штриховка выполняется прямыми линиями. Штриховка более светлых поверхностей выполняется твердым карандашом со слабым нажимом (рис. 7.2). Более темные поверхности штрихуются мягким карандашом. Чем темнее поверхность, тем больше нажим на карандаш при штриховке.




Рисунок 7.2

Вариант 1

Рисунок 7.3 Корпус

Вариант 2

Рисунок 7.4 Стойка

Вариант 3

Рисунок 7.5 Опора

Вариант 4

Рисунок 7.6 Стойка

Вариант 5

Рисунок 7.7 Крышка

Вариант 6

Рисунок 7.8 Крышка

Вариант 7

Рисунок 7.9 Крышка

Вариант 8

Рисунок 7.10 Корпус

Вариант 9

Рисунок 7.11 Опора

Вариант 10

Рисунок 7.12 Опора

Вариант 11

Рисунок 7.13 Крышка

Вариант 12

Рисунок 7.14 Опора

Вариант 13

Рисунок 7.15 Корпус

Вариант 14

Рисунок 7.16 Опора

Вариант 15

Рисунок 7.17 Фланец

Вариант 16

Рисунок 7.18 Упор

Вариант 17

Рисунок 7.19 Корпус

Вариант 18

Рисунок 7.20 Коробка

Вариант 19

Рисунок 7.21 Опора

Вариант 20

Рисунок 7.22 Корпус

Графическая работа № 8

ПРОСТОЙ РАЗРЕЗ

ЗАДАНИЕ:

1) По двум проекциям модели (рисунок 8.1 – 8.20) построить третью проекцию с применением разрезов, указанных в схеме, нанести размеры.

2) Выполнить изометрию модели с вырезом передней четверти.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Для выполнения работы необходимо изучить тему «Простые разрезы». Правила выполнения разрезов следующие:

1) Положение секущей плоскости указывают на чертеже разомкнутой линией и стрелка­ми, указывающими направление взгляда. Стрелки наносят на расстоянии 2 - 3 мм от внешнего конца штриха линии сечения. Над разре­зом выполняется надпись, которая содержит две буквы, которыми обо­значена секущая плоскость, написанные через тире и подчеркнутые тонкой линией, например, «А–А ».

2) Если секущая плоскость совпадает с плоскостью симметрии предмета и разрез расположен в проекционной связи с видом, то при выполнении го­ризонтальных, фронтальных и профильных разрезов положение секущей плоскости на чертеже не отме­чается и разрез надписью не сопровождается.

3) На одном изображении допускается соединять часть вида и часть разреза. Линии невидимого контура на соединяемых частях вида и разреза обычно не показы­ваются.

4) Если деталь симметрич­ная, то на чертеже половина вида и половина разреза, разделяются штрихпунктирной линией, являющейся осью симметрии. Часть разреза располагают справа или снизу от оси симметрии.

Вариант 1












б)

Рисунок 820 Схема выполнения разрезов (а) и две проекции модели (б)

Графическая работа № 9

Дата: 2010-08-02

Практически все, кому довелось изучать черчение и инженерную графику сталкивались с необходимостью произвести построение изометрической проекции детали. В этом уроке мы попробуем разобрать основные моменты, которые нужно знать, чтоб начертить изометрию. Уверен, что повторив указанные в этом уроке шаги, вы сможете самостоятельно выполнить и более сложное задание. В вашей детали может быть большее количество построений, но основные принципы останутся неизменными. Но при этом оговорюсь, что построение изометрии скорее всего будет вам не под силу, если вы еще не освоили построение третьего вида и построение простого разреза. Вы должны уже уметь хорошо ориентироваться в трех видах на чертеже.

Начнем с того, что определимся с направлением осей в изометрии.

На следующей схеме показано соответствие направлений, по которым откладываются размеры в изометрии по отношению к размерам на чертеже. Интересный момент: как показал опыт, этот рисунок кому-то помогает понять принцип построения, а кого-то - наоборот - ставит в тупик. Поэтому, если вас эта схема скорее смущает, нежели просветляет, не зацикливайтесь на нем и читайте дальше - вполне вероятно, что там все будет понятно.

На этом закончим вступительную часть и начнем непосредственно построение изометрической проекции детали. Возьмем для примера не очень сложную деталь. Это параллелепипед 50х60х80мм, имеющий сквозное вертикальное отверстие диаметром 20 мм и сквозное прямоугольное отверстие 50х30мм.

Начнем построение изометрии с вычерчивания верхней грани фигуры. Расчертим на требуемой нам высоте тонкими линиями оси Х и У. Из получившегося центра отложим вдоль оси Х 25 мм (половина от 50) и через эту точку проведем отрезок параллельный оси У длиной 60 мм. Отложим по оси У 30 мм (половина от 60) и через полученную точку проведем отрезок параллельный оси Х длиной 50 мм. Достроим фигуру.

Мы получили верхнюю грань фигуры. Не хватает только отверстия диаметром 20 мм. Построим это отверстие. В изометрии окружность изображается особым образом - в виде эллипса. Это связано с тем, что мы смотрим на нее под углом. Изображение окружностей на всех трех плоскостях я описал в отдельном уроке, а пока лишь скажу, что в изометрии окружности проецируются в эллипсы с размерами осей a=1,22D и b=0,71D. Эллипсы, обозначающие окружности на горизонтальных плоскостях в изометрии изображаются с осью а расположенной горизонтально, а ось b - вертикально. При этом расстояние между точками расположенными на оси Х или У равно диаметру окружности (смотри размер 20 мм).



Теперь, из трех углов нашей верхней грани начертим вниз вертикальные ребра - по 80 мм и соединим их в нижних точках. Фигура почти полностью начерчена - не хватает только прямоугольного сквозного отверстия.

Чтобы начертить его опустим вспомогательный отрезок 15 мм из центра ребра верхней грани (указан голубым цветом). Через полученную точку проводим отрезок 30 мм параллельный верхней грани (и оси Х). Из крайних точек чертим вертикальные ребра отверстия - по 50 мм. Замыкаем снизу и проводим внутреннее ребро отверстия, оно параллельно оси У.

На этом простая изометрическая проекция может считаться завершенной. Но как правило, в курсе инженерной графики выполняется изометрия с вырезом одной четверти. Чаще всего, это четверть нижняя левая на виде сверху - в этом случае получается наиболее интересный с точки зрения наблюдателя разрез (конечно же все зависит от изначальной правильности компоновки чертежа, но чаще всего это так). На нашем примере эта четверть обозначена красными линиями. Удалим ее.

Как видим из получившегося чертежа, сечения полностью повторяют контур разрезов на видах (смотри соответствие плоскостей обозначенных цифрой 1), но при этом они вычерчены параллельно изометрическим осям. Сечение же второй плоскостью повторяет разрез выполненный на виде слева (в данном примере этот вид мы не чертили).

Надеюсь, этот урок оказался полезным, и построение изометрии вам уже не кажется чем-то совершенно неведомым. Возможно, некоторые шаги придется прочитать по два, а то и по три раза, но в конечном итоге понимание должно будет прийти. Удачи вам в учебе!

Самый простой способ, которым пользуются малыши и их родители, - это плоскостное изображение. То есть рисование квадрата либо прямоугольника, лицевой стены, обращённой к наблюдателю, над ним - треугольника-крыши, окошек, трубы. Но это так называемый «детский вариант». А чтобы он выглядел более реально? Здесь следует познакомиться с несколькими научными понятиями.

Как нарисовать дом в изометрической проекции?

Впервые мы сталкиваемся с этим способом при изучении тригонометрии, а также на уроках черчения. Вычерчивая куб на уроках тригонометрии, мы получаем визуально почти реальный его вид в трёхмерном изображении. Причём все стороны его сохраняют равный размер, а передняя - даже имеет прямые углы. Способ изображения предметов в изометрической проекции используется в машиностроении при вычерчивании деталей на чертежах, в системах автоматизированного проектирования и в компьютерных играх.

А так как нарисовать дом в изометрической проекции можно по алгоритму вычерчивания куба, то и начинать нужно с квадрата либо прямоугольника: всё зависит от того, какова передняя стена изображаемого объекта. Далее следует начертить заднюю стену, идентичную передней, разместив её основание немного выше передней стены и сдвинув вправо либо влево. Третьим этапом будет соединение углов квадратов либо прямоугольников. Теперь следует убрать лишние вспомогательные линии при помощи ластика. Крыша также должна быть выполнена в изометрической проекции. Это особого труда не составит для тех, кто уже столкнулся с алгоритмом подобных построений. Таким образом, вопрос о том, как нарисовать дом карандашом, можно считать решенным. Но всё-таки, что-то в получившемся рисунке не совсем так!

Как правильно нарисовать дом?

Ответ на этот вопрос нашёл ещё в пятнадцатом веке архитектор из Италии Брунеллески. Именно он обратил внимание на тот факт, что удалённые предметы как будто зрительно уменьшаются. Если сравнивать дерево, стоящее в метре от наблюдателя, с таким же деревом на расстоянии двадцати метров, то разница будет весьма ощутима. А рельсы? Вот они под нашими ногами, вроде бы параллельно расположены относительно друг друга. Но если вглядеться в даль, то можно заметить, что расстояние между ними всё уменьшается и уменьшается. В конце концов, происходит мистическое превращение: параллельные рельсы «стекаются» в одну точку! Эту точку называют «точкой схода»: в ней соединяются все Определив глубину проекции, то есть место расположения точки схода прямых относительно объекта изображения, художник строит макет будущего рисунка. Интересен тот факт, что точка схода может располагаться далеко за пределами полотна, на котором планируется написание картины. Затем проводят (возможно, мысленно) все прямые. Они должны сходиться именно в этой точке. Таким образом, задняя стена дома получается короче передней. Зато изображение выходит более реалистичным, чем при способе рисования, опирающемся на изометрическую проекцию.

← Вернуться

×
Вступай в сообщество «lenew.ru»!
ВКонтакте:
Я уже подписан на сообщество «lenew.ru»