Естественные шкалы измерений. Измерение. Шкалы измерений. Виды шкал измерений

Подписаться
Вступай в сообщество «lenew.ru»!
ВКонтакте:

Теоретическая валидизация в социологическом исследовании: Методология и методы

Благодаря Стенли Стивенсону, в нашей исследовательской практике мы оперируем несколькими типами шкал. Некоторые критикуют эту типологию, но судя по-всему никто не придумал ничего лучше.

0 Нажми, если пригодилось =ъ

Независимо от того, какой сложности анкетные вопросы или же тестовые методики вы рассматриваете, все их можно разделить на три типа в зависимости от того, к какой измерительной шкале они относятся. Речь в данном случае идет не о специфических методиках построения измерительных инструментов (например, шкала Гутмана или шкала Терстоуна), а о классификации измерительных шкал, предложенной Стэнли Стивенсом в 1946 году. Знание этой классификации имеет решающее значение с точки зрения использования количественного подхода, поскольку применение тех или иных методов математической статистики опирается, в том числе, и на измерительные шкалы, в которой отображены интересующие исследователя переменные.

Более подробно о понятии "переменная"
"Переменная" является часто употребляемым понятием в рамках научных исследований (не только в социальных и поведенческих науках) и особенно, если мы говорим о количественном подходе и применении статистических методов. Фактически переменная - это любое свойство изучаемых объектов, которое меняется от одного наблюдения к другому. Под наблюдениями в данном случае понимаются объекты изучения (люди, организации, страны или что-либо другое - зависит от самого исследования).
Если же некоторое свойство не изменяется от одного наблюдения к другому, то оно не дает никакой ценной в математическом смысле информации (большинство методов будет просто непригодно для использования).
Таким образом, в рамках количественного подхода изучаемые объекты представляются в виде набора переменных, составляющих интерес и подлежащих изучению. Нетрудно догадаться что переменные, прежде всего, делятся в зависимости от шкал, в которых они отображены. Так, можно выделить, например, номинальные, порядковые и метрические переменные. При этом, порядковые можно разделить на свернутые и непрерывные порядковые. Непрерывные порядковые переменные имеют множество численных значений и выглядят (по крайней мере, на первый взгляд), как метрические. Свернутые порядковые переменные имеют лишь несколько категорий или численных значений (не более пяти-шести). Они могут быть получены либо путем сбора данных в свернутой форме, либо сворачивания непрерывной порядковой или метрической шкалы.
Еще одним важным делением переменных является деление на зависимые и независимые. Часто в процессе анализа выдвигаются гипотезы о влиянии одних переменных на другие. В таких случаях, влияющие переменные называются независимыми, а переменные, на которые влияние оказывается, - зависимыми. Например, если мы говорим о взаимосвязи между полом студента и успешностью его обучения, то пол будет - независимой переменной, а успешность обучения - зависимой.

Согласно классификации Стивенсона, в самом общем виде, можно выделить три типа шкал:
- номинальную,
- порядковую,
- метрическую.

Номинальная шкала включает в себя класс переменных, значения которых можно разделить на группы, но невозможно проранжировать. Примерами соответствующих переменных являются пол, национальность, религия и т.д. Рассмотрим более подробно такую переменную как национальность. В данном случае респондентов можно разделить на разные группы в зависимости от того, к какой национальности они себя относят. Вместе с тем, на основе этой информации, респондентов невозможно упорядочить в смысле количественной выраженности интересующего нас параметра, ведь национальность не является измеряемым, в традиционном значении этого слова, свойством.
Порядковая шкала включает в себя класс переменных, значения которых можно не только разделить на группы, но и проранжировать в зависимости от выраженности измеряемого свойства. Классическим примером порядковой шкалы является Шкала Богардуса, предназначенная для измерения национальной дистанциированности. Ниже приведен адаптированный для населения Украины вариант (Н.Панина, Е.Головаха):

Анкетное задание
Относительно каждой национальности, приведенной ниже, выберите одно из положений, наиболее близкое для вас лично, на которое бы вы допустили представителей этой национальности.
Шкала ответов
1) как членов моей семьи;
2) как близких друзей;
3) как соседей;
4) как колег по работе;
5) как жителей Украины;
6) как поситителей Украины;
7) вообще не допускал бы в Украину.

Эта шкала позволяет упорядочить респондентов в зависимости от их отношения к той или иной национальности. Вместе с тем, она предоставляет лишь приблизительную информацию, которая не дает возможности точно оценить различия между градациями шкалы. Так, например, мы может утверждать, что респондент, готовый допустить евреев в качестве членов своей семьи будет относится к ним лучше, чем тот, кто готов допустить их лишь как соседей. Вместе с тем, мы не можем сказать "на сколько?" или "во сколько?" раз первый респондент лучше относится к представителям еврейской национальности чем второй. Другими словами, у нас нет никаких аргументов, которые бы подтверждали равенство интервалов между пунктами шкалы.
Метрическая шкала включает в себя класс переменных, значения которых можно как разделить на группы и проранжировать, так и определить их величину в точных терминах (те самые "на сколько?" и "во сколько?"). Типичными примерами соответствующих переменных являются возраст, заробтная плата, количество детей и т.д. Измерение каждой из них можно осуществить максимально точно: возраст в годах, зароботнуню плату в гривнах, количество детей в... штуках;)
Естественно, если переменная может быть потенциально выражена в метрической шкале, то эту же переменную можно выразить и в порядковой.

Например, возраст можно выразить в возрастных группах (молодежь, средний возраст, пожилой возраст), которые дают лишь приблизительную информацию о респонденте, несмотря на возможность их ранжирования.
Принадлежность переменной к метрической шкале открывает возможность использования любых статистических методов. В свою очередь принадлежность к порядковой или номинальной ограничивает выбор математических инструментов (в случае порядковой шкалы в меньшей мере, а в случае номинальной - в большой). Классификация статистических методов приведена .
Для того, чтобы сделать различия между номинальной, порядковой и метрической шкалами еще более очевидными, приведу дополнительный пример, посвященный рейтингу профессиоанальных боксеров в супертяжелом весе по версии сайта boxrec.com (информация актуальна по состоянию на 31.01.2012). При этом мы рассмотрим данные относительно боксеров первой десятки по трем переменным: этническая принадлежность боксера, его место в рейтинге и количество рейтинговых очков, которые имелись у него в активе 31.01.2012.

А) Этническая принадлежность (номинальная шкала ). Три боксера (братья Кличко и Димитренко) являются украинцами, один (Поветкин) - русским, один (Адамек) - Поляком, два (Чемберс и Томпсон) - американцами, один (Фьюри) - британцем, один (Хелениус) - фином, один (Пулев) - болгарином. Таким образом переменная "национальность" помогла нам разделить всех боксеров на 7 групп, в зависимости от их этнической принадлежности. Владея этими данными, человек далекий от бокса ничего не сможет сказать об успешности перечисленных боксеров, хотя и получит информацию об этнической принадлежности 10-ти наилучших тяжеловесов (мы и далее будет обращаться к гипотетическому эксперту):
украинцы - 30%;
американцы - 20%;
русские, поляки, британцы, фины и болгары - по 10%.
Б) Место в рейтинге (порядковая шкала ) дает приблизительную информацию об успешности боксера. Ситуация следующая:
1. Владимир Кличко
2. Виталий Кличко
3. Александр Поветкин
4. Томаш Адамек
5. Эдди Чемберс
6. Тайсон Фьюри
7. Роберт Хелениус
8. Тони Томпсон
9. Александр Димитренко
10. Кубрат Пулев
Теперь наш неосведомленный аналитик знает последовательность первой десятки боксеров супертяжелого веса. И хотя здесь уже присутствуют числа от 1 до 10, он все еще не может осуществлять никаких математических операций кроме сравнения. К примеру, он не может сказать, что Владимир Кличко лучше Эдди Чемберса на 4 единицы. Выражение "5 минус 1" в данном случае не имеет смысла. В отношении этих двух боксеров он может утверждать лишь то, что Владимир Кличко лучше Эдди Чемберса как боксер (как впрочем и всех остальных из десятки). Причина невозможности осуществления математических действий заключается в том, что между пунктами с 1-го по 10-й нет равенства интервалов. Каковы на самом деле интервалы между пунктами, можно увидеть благодаря последней переменной.
В) Количество рейтинговых очков (метрическая шкала ). Данный показатель

14. Понятие, виды, особенности измерительных шкал

Измерение - это алгоритмическая операция, которая данному наблюдаемому состоянию объекта ставит в соответствие определенное обозначение: число, помер или символ. Обозначим через хi. i=1,…, m наблюдаемое состояние (свойство) объекта, а через уi, i = 1,..,m - обозначение для этого свойства. Чем теснее соответствие между состояниями и их обозначениями, тем больше информации можно извлечь в результате обработки данных. Менее очевидно, что степень этого соответствия зависит не только от организации измерений (т. е. от экспериментатора), но и от природы исследуемого явления, и что сама степень соответствия в свою очередь определяет допустимые (и недопустимые) способы обработки данных!

Измерительные шкалы в зависимости от допустимых на них операций различаются по их силе. Самые слабые - номинальные шкалы, а самые сильные - абсолютные.

С. Стивенсом предложена классификация из 4 типов шкал измерения:

1) номинативная, или номинальная, или шкала наименований;

2) порядковая, или ординальная, шкала;

3) интервальная, или шкала равных интервалов;

4) шкала равных отношений.

Выделяют три основных атрибута измерительных шкал, наличие или отсутствие которых определяет принадлежность шкалы к той или иной категории:

1. упорядоченность данных означает, что один пункт шкалы, соответствующий измеряемому свойству, больше, меньше или равен другому пункту;

2. интервальность пунктов шкалы означает, что интервал между любой парой чисел, соответствующих измеряемым свойствам, больше, меньше или равен интервалу между другой парой чисел;

3. нулевая точка (или точка отсчета) означает, что набор чисел, соответствующих измеряемым свойствам, имеет точку отсчета, обозначаемую за ноль, что соответствует полному отсутствию измеряемого свойства.

Кроме того, выделяют следующие группы:

    неметрические или качественные шкалы, в которых отсутствуют единицы измерений (номинальная и порядковая(ранговая) шкалы);

    количественные или метрические (шкала интервалов, абсолютная шкала).

Шкалирование представляет собой отображение какого-либо свойства объекта или явления в числовом множестве.

Можно сказать, что чем сильнее шкала, в которой производятся измерения, тем больше сведений об изучаемом объекте, явлении, процессе дают измерения. Поэтому так естественно стремление каждого исследователя провести измерения в возможно более сильной шкале. Однако важно иметь в виду, что выбор шкалы измерения должен ориентироваться на объективные отношения, которым подчинена наблюдаемая величина, и лучше всего производить измерения в той шкале, которая максимально согласована с этими отношениями. Можно измерять и в шкале более слабой, чем согласованная (это приведет к потере части полезной информации), но применять более сильную шкалу опасно: полученные данные на самом деле не будут иметь той силы, на которую ориентируется их обработка.

Иногда же исследователи усиливают шкалы; типичный случай - «оцифровка» качественных шкал: классам в номинальной или порядковой шкале присваиваются номера, с которыми дальше «работают» как с числами. Если в этой обработке не выходят за пределы допустимых преобразований, то «оцифровка» - это просто перекодировка в более удобную (например, для ЭВМ) форму. Однако применение других операций сопряжено с заблуждениями, ошибками, так как свойства, навязываемые подобным образом, на самом деле не имеют места.

Виды шкал:

    Номинативная или шкала наименований:

Позволяет установить к какому классу относится тот или иной объект измерения. Все объекты группируются по классам. Каждому классу приписывается значение. Особенностью является то, что учитывается одно значение чисел. Обычные арифметические операции недопустимы. Мы можем сделать вывод о тождественности по измеряемому свойству. Иными словами, объекты сравниваются друг с другом и определяется их эквивалентность -- неэквивалентность. В результате процедуры образуется совокупность классов эквивалентности. Объекты, принадлежащие одному классу, эквивалентны друг другу и отличны от объектов, относящихся к другим классам. Эквивалентным объектам присваиваются одинаковые имена. О шкале наименований можно говорить в том случае, когда эмпирические объекты просто "метятся" числом. Несмотря на тенденцию "завышать" мощность шкалы, психологи очень часто применяют шкалу наименований в исследованиях. "Объективные" измерительные процедуры при диагностике личности приводят к типологизации: отнесению конкретной личности к тому или иному типу. Примером такой типологии являются классические темпераменты: холерик, сангвиник, меланхолик и флегматик.

Самая простая номинативная шкала называется дихотомической. При измерениях по дихотомической шкале измеряемые признаки можно кодировать двумя символами или цифрами, например 0 и 1, или 2 и 6, или буквами А и Б, а также любыми двумя отличающимися друг от друга символами. Признак, измеренный по дихотомической шкале, называется альтернативным. В дихотомической шкале все объекты, признаки или изучаемые свойства разбиваются на два непересекающихся класса, при этом исследователь ставит вопрос о том, «проявился» ли интересующий его признак у испытуемого или нет.

Операции с числами для номинативной шкалы.

1) Нахождение частот распределения по пунктам шкалы с помощью процентирования или в

численности к общему ряду распределения (частоты).

2) Поиск средней тенденции по модальной частоте. Модальной (Мо) называют группу с

наибольшей численностью. Эти две операции дают представление о распределении

психологических характеристик в количественных показателях. Его наглядность повышается

отображением в диаграммах.

3) Самым сильным способом количественного анализа является установление взаимосвязи

между рядами свойств, расположенных неупорядоченно. С этой целью составляют

перекрестные таблицы. Помимо простой процентовки в таблицах перекрестной

    Порядковая (ранговая) шкала:

Измерения предполагают приписывание объектам чисел в зависимости от выраженности признака. Данная шкала делит всю совокупность признаков на множество, которые связаны отношениями «больше - меньше». Для объектов с одинаковой выраженностью признака используется правило равных рангов. При ранжировании необходимо указывать какому значению (наибольшему или наименьшему) присваивается первый ранг. Эта операция должна быть одинакова для всех признаков.

Чтобы проверить правильность ранжирования используется формула: сумма рангов равна общее количество измерений умноженное на сумму N+1 и делённое на 2.

Шкалы порядка широко используются в психологии познавательных процессов, экспериментальной психосемантике, социальной психологии: ранжирование, оценивание, в том числе педагогическое, дают порядковые шкалы. Классическим примером использования порядковых шкал является тестирование личностных черт, а также способностей. Большинство же специалистов в области тестирования интеллекта полагают, что процедура измерения этого свойства позволяет использовать интервальную шкалу и даже шкалу отношений.

В качестве характеристики центральной тенденции можно использовать медиану, а в качестве характеристики разброса - процентили. Для установления связи двух измерений допустима порядковая корреляция (т-Кэнделла и р-Спирмена).

Характерной особенностью порядковых шкал является то, что отношение порядка ничего не говорит о дистанции между сравниваемыми классами. Поэтому порядковые экспериментальные данные, даже если они изображены цифрами, нельзя рассматривать как числа.Числовые значения порядковой шкалы нельзя складывать, вычитать, делить и умножать.

    Интервальная шкала.

Отражает уровень выраженности свойства. Данная шкала предполагает использование единиц измерения. Тестовые шкалы, разработанные в следствии стандартизации. Но в данной шкале не существует нулевой точки отсчёта. Ряд авторов полагают, что относить тесты интеллекта к шкалам интервалов нет оснований. Во-первых, каждый тест имеет "нуль" - любой индивид может получить минимальный балл, если не решит ни одной задачи в отведенное время. Во-вторых, тест имеет максимум шкалы -- балл, который испытуемый может получить, решив все задачи за минимальное время. В-третьих, разница между отдельными значениями шкалы неодинакова. По крайней мере, нет никаких теоретических и эмпирических оснований утверждать, что 100 и 120 баллов по шкале IQ отличаются на столько же, на сколько 80 и 100 баллов.

Скорее всего, шкала любого теста интеллекта является комбинированной шкалой, с естественным минимумом и\или максимумом, но порядковой. Однако эти соображения не мешают тестологам рассматривать шкалу IQ как интервальную, преобразуя "сырые" значения в шкальные с помощью известной процедуры "нормализации" шкалы

Интервальная шкала позволяет применять практически всю параметрическую статистику для анализа данных, полученных с ее помощью. Помимо медианы и моды для характеристики центральной тенденции используется среднее арифметическое, а для оценки разброса--дисперсия. Можно вычислять коэффициенты асимметрии и эксцесса и другие параметры распределения. Для оценки величины статистической связи между переменными применяется коэффициент линейной корреляции Пирсона и т.д.

Операции с числами в интервальной метрической шкале богаче. Чем в номинальных

1) Точка отсчета на шкале выбирается произвольно.

2) Все методы описательной статистики.

3) Возможности корреляционного и регрессионного анализа. Можно использовать коэффициент парной корреляции Пирсона и коэффициенты множественной корреляции, что может предсказать изменения в одной переменной в зависимости от изменений в другой или в целом ряде переменных.

    Шкала абсолютная. (шкала отношений):

Шкалу отношений называют также шкалой равных отношений. Особенностью этой шкалы является наличие твердо фиксированного нуля, который означает полное отсутствие какого-либо свойства или признака. Шакала отношений является наиболее информативной шкалой, допускающей любые математические операции и использование разнообразных статистических методов. Шкала отношений по сути очень близка интервальной, поскольку если строго фиксировать начало отсчета, то любая интервальная шкала превращается в шкалу отношений.

Шкала отношений показывает данные о выраженности свойств объектов, когда можно сказать, во сколько раз один объект больше или меньше другого.

Это возможно лишь тогда, когда помимо определения равенства, рангового порядка, равенства интервалов известно равенство отношений. Шкала отношений отличается от шкалы интервалов тем, что на ней определено положение "естественного" нуля. Классический пример -- шкала температур Кельвина. Именно в шкале отношений производятся точные и сверхточные измерения в таких науках, как физика, химия, микробиология и др. Измерение по шкале отношений производятся и в близких к психологии науках, таких, как психофизика, психофизиология, психогенетика.

Измерения массы, времени реакции и выполнения тестового задания -- области применения шкалы отношений.

В шкалах отношений классы обозначаются числами, которые пропорциональны друг другу: 2 так относится к 4, как 4 к 8. Это предполагает наличие абсолютной нулевой точки отсчета. Считается, что в психологии примерами шкал равных отношений являются шкалы порогов абсолютной чувствительности. Возможности человеческой психики столь велики, что трудно представить себе абсолютный нуль в какой-либо измеряемой психологической переменной. Абсолютная глупость и абсолютная честность – понятия скорее житейской психологии.

Возможны преобразования из одной шкалы в другую. Результаты, полученные по шкале интервалов, могут быть преобразованы в ранги или переведены в номинативную шкалу.

Рассмотрим, например, первичные результаты шести испытуемых по шкале экстраверсии-

интроверсии теста Айзенка. психолог обязан помнить, что в действительности

скрывается за величинами, которыми он оперирует.

1) Первое ограничение – соразмерность количественных показателей, фиксированных разными шкалами в рамках одного исследования. Более сильная шкала отличается от слабой тем, что допускает более широкий диапазон математических операций с числами. Все, что допустимо для слабой шкалы допустимо и для более сильной, но не наоборот. Поэтому, смешение в анализе мерительных эталонов разного типа приводит к тому, что не используются возможности сильных шкал.

2) Второе ограничение связано с формой распределения величины фиксированных описанными выше шкалами, которое предполагается нормальным.

Проблема обеспечения высокого качества продукции тесным образом связана с проблемой качества измерений. Между ними явно прослеживается непосредственная связь: там, где качество измерений не соответствует требованиям технологического процесса, невозможно достичь высокого уровня качества продукции. Поэтому качество продукции в значительной степени зависит от успешного решения вопросов, связанных с точностью измерений параметров качества материалов и комплектующих изделий и поддержания заданных технологических режимов. Иными словами, технический контроль качества осуществляется путем замеров параметров технологических процессов, результаты измерений которых необходимы для регулирования процессом.

Следовательно, качество измерений представляет собой совокупность свойств состояния измерений, обеспечивающих результаты измерений с требуемыми точностными характеристиками, получаемые в необходимом виде за определенный отрезок времени.

Основные свойства состояния измерений:

Точность результатов измерений;

Воспроизводимость результатов измерений;

Сходимость результатов измерений;

Быстрота получения результатов;

Единство измерений.

При этом под воспроизводимостью результатов измерений понимается близость результатов измерений одной и той же величины, полученные в разных местах, разными методами, разными средствами, разными операторами, в разное время, однако в одних и тех же условиях измерений (температуре, давлении, влажности и т.д.).

Сходимость результатов измерений - это близость результатов измерений одной и той же величины, проведенных повторно с применением одних и тех же средств, одним и тем же методом в одинаковых условиях и с той же тщательностью.

Любое измерение или количественное оценивание чего-либо осуществляется, используя соответствующие шкалы.

Шкала - это упорядоченный ряд отметок, соответствующий соотношению последовательных значений измеряемых величин. Шкалой измерений называется принятая по соглашению последовательность значений одноименных величин различного размера.

В метрологии шкала измерений является средством адекватного сопоставления и определения численных значений отдельных свойств и качеств различных объектов. Практически используют пять видов шкал: шкалу наименований, шкалу порядка, шкалу интервалов, шкалу отношений и шкалу абсолютных значений.

Шкала наименований (номинальная шкала). Это самая простая из всех шкал. В ней числа выполняют роль ярлыков и служат для обнаружения и различения изучаемых объектов. Числа, составляющие шкалу наименований, разрешается менять местами. В этой шкале нет отношений типа «больше-меньше», поэтому некоторые полагают, что применение шкалы наименований не стоит считать измерением. При использовании шкалы наименований могут проводится только некоторые математические операции. Например, ее числа нельзя складывать и вычитать, но можно подсчитывать, сколько раз (как часто) встречается то или иное число.

Шкала порядка. Места, занимаемые величинами в шкале порядка, называются рангами, а сама шкала называется ранговой, или неметрической. В такой шкале составляющие ее числа упорядочены по рангам (т.е. занимаемым местам), но интервалы между ними точно измерить нельзя. В отличие от шкалы наименований шкала порядка позволяет не только установить факт равенства или неравенства измеряемых объектов, но и определить характер неравенства в виде суждений: «больше-меньше», «лучше-хуже» и т.п.

С помощью шкал порядка можно измерять качественные, не имеющие строгой количественной меры, показатели. Особенно широко эти шкалы используются в гуманитарных науках: педагогике, психологии, социологии. К рангам шкалы порядка можно применять большее число математических операций, чем к числам шкалы наименований.

Шкала интервалов. Это такая шкала, в которой числа не только упорядочены по рангам, но и разделены определенными интервалами. Особенность, отличающая ее от описываемой дальше шкалы отношений, состоит в том, что нулевая точка выбирается произвольно. Примерами могут быть календарное время (начало летоисчисления в разных календарях устанавливалось по случайным причинам, температура, потенциальная энергия поднятого груза, потенциал электрического поля и др.).

Результаты измерений по шкале интервалов можно обрабатывать всеми математическими методами, кроме вычисления отношений. Данные шкалы интервалов дают ответ на вопрос «на сколько больше?», но не позволяют утверждать, что одно значение измеренной величины во столько-то раз больше или меньше другого. Например, если температура повысилась с 10 до 20°С, то нельзя сказать, что стало в два раза теплее.

Шкала отношений. Эта шкала отличается от шкалы интервалов только тем, что в ней строго определено положение нулевой точки. Благодаря этому шкала отношений не накладывает никаких ограничений на математический аппарат, используемый для обработки результатов наблюдений.

По шкале отношений измеряют и те величины, которые образуются как разности чисел, отсчитанных по шкале интервалов. Так, календарное время отсчитывается по шкале интервалов, а интервалы времени - по шкале отношений.

При использовании шкалы отношений (и только в этом случае!) измерение какой-либо величины сводится к экспериментальному определению отношения этой величины к другой подобной, принятой за единицу. Измеряя длину объекта, мы узнаем, во сколько раз эта длина больше длины другого тела, принятого за единицу длины (метровой линейки в данном случае) и т.п. Если ограничиться только применением шкал отношений, то можно дать другое (более узкое, частное) определение измерения: измерить какую-либо величину - значит найти опытным путем ее отношение к соответствующей единице измерения.

Шкала абсолютных величин. Во многих случаях напрямую измеряется величина чего-либо. Например, непосредственно подсчитывается число дефектов в изделии, количество единиц произведенной продукции, сколько студентов присутствует на лекции, количество прожитых лет и т.д. и т.п. При таких измерениях на измерительной шкале отмечаются

абсолютные количественные значения измеряемого. Такая шкала абсолютных значений обладает и теми же свойствами, что и шкала отношений, с той лишь разницей, что величины, обозначенные на этой шкале, имеют абсолютные, а не относительные значения.

Результаты измерений по шкале абсолютных величин имеют наибольшую достоверность, информативность и чувствительность к неточностям измерений.

Шкалы интервалов, отношений и абсолютных величин называются метрическими, так как при их построении используются некоторые меры, т.е. размеры, принятые в качестве единиц измерений.

ШКАЛА ИЗМЕРЕНИЙ

ШКАЛА ИЗМЕРЕНИЙ

Основополагающее понятие метрологии, позволяющее количественно или к.-л. другим способом определить свойство объекта. Ш. и. является более общим понятием, чем единица физической величины, отсутствующая в нек-рых видах измерений. Ш. и. необходимы как для количественных (длина, темп-pa), так и для качественных (цвет) проявлений свойств объектов (тел, веществ, явлений, процессов). Проявления свойства образуют , элементы к-рого находятся в опре-дел. логич. отношениях между собой, т. е. являются т. н. системой с отношениями. Имеются в виду отношения типа "эквивалентность" (равенство), "больше", "меньше", возможность "суммирования" элементов или "деления" одного на другой. Ш. и. получается гомоморфным отображением множества элементов такой системы с отношениями на множество чисел или, в более общем случае,- на знаковую систему с аналогичными логич. отношениями. Такими знаковыми системами, напр., являются: множество обозначений (названий) цветов, совокупность классификац. символов или понятий, множество названий состояний объекта, множество баллов оценки состояний объекта и т. п. При таком отображении используется модель объекта, достаточно адекватно (для решения измерит. задач) описывающая логич. структуру рассматриваемого свойства этого объекта.

В соответствии с логич. структурой свойств в теории измерений принято в основном различать 5 типов Ш. и.: шкалы наименований, порядка, разностей (интервалов), отношений и абс. шкалы (см. табл.).

Шкала наименований характеризуется только отношением эквивалентности к.-л. качественного проявления свойства. Пример такой Ш. и.- классификация (оценка) цвета объекта по наименованиям (красный, белый, сине-зелёный и т. д.), опирающаяся на стандартные атласы цветов (в атласах цвета могут обозначаться усл. номерами). Измерения выполняются путём сравнения при опре-дел. освещении образцов цвета из атласа с исследуемым цветом и установления их эквивалентности.

Шкала порядка описывает свойства, для к-рых имеют смысл не только отношение эквивалентности, но и отношение порядка по возрастанию или убыванию количественного проявления свойства. Характерный пример шкал порядка - шкалы чисел твёрдости тел, шкалы баллов землетрясений, шкалы баллов ветра и т. д. В такого рода шкалах в принципе нет возможности введения единицы измерений, также не имеют смысла суждения, во сколько раз больше или меньше проявления конкретных свойств. Разл. варианты шкал порядка для одного и того же свойства связаны между собой монотонными зависимостями. В шкалах порядка может быть (иметь смысл) нуль или его может не быть. Так, шкалы твёрдости начинаются с не-к-рого ненулевого значения, сейсмич. шкала начинается с одного балла, а шкала Бофорта для силы ветра - с нулевого значения.

Шкала разностей (интервалов) отличается от шкалы порядка тем, что для описываемого ею свойства имеют смысл не только отношения эквивалентности и порядка, но и пропорциональности или суммирования интервалов (разностей) между разл. количественными проявлениями свойства. Характерный пример - шкалы времени; интервалы времени можно суммировать или вычитать, складывать же даты к.-л. событий бессмысленно. Шкалы разностей имеют усл. нуль, опирающийся на к.-л. репер (напр., шкала Цельсия, см. Температурная шкала).

Шкала отношений описывает свойства, ко множеству количественных проявлений к-рых применимы отношения эквивалентности, порядка, пропорциональности или суммирования (а следовательно, и вычитания, и умножения). В шкале отношений существует естеств. критерий нулевого количественного проявления свойства, т. е. нуль имеет не усл. значение, а вполне определ. физ. смысл. Примеры шкал отношений - шкала массы, термодина-мич. температурная шкала.

Абсолютные шкалы обладают всеми признаками шкал отношений, но дополнительно в них существует естественное однозначное определение единицы измерения. Такие Ш и. соответствуют относит. величинам - отношениям одноимённых физ. величин, описываемых шкалами отношений. К таким величинам относятся коэф. усиления, колебат. системы, коэф. ослабления и т. п. Среди абс. шкал выделяются ограниченные по диапазону шкалы, значения к-рых находятся в пределах от 0 до 1. Они характерны для , амплитудной модуляции и т. п. величин.

Большинство свойств, к-рые рассматривают в практич. метрологии, описывается одномерными Ш. и. Однако имеются свойства, к-рые в принципе можно описать только многомерными шкалами. Таковы, напр., трёхмерные шкалы цвета в колориметрии. Шкалы сортности изделий и продуктов в общем случае являются многомерными шкалами наименований и опираются на ряд факторов, каждый из к-рых определяется по специализир. шкалам наименований порядка или по общим шкалам интервалов, отношений и абсолютным, описывающим общепринятые физ. величины и параметры (напр., размеры изделия).

Практич. реализация шкал конкретных свойств достигается путём стандартизации шкал и единиц измерений, а также способов и условий их однозначного воспроизведения эталонами и средствами измерений. Понятие единицы измерений, неизменной для любых участков шкалы, имеет смысл только для шкал отношений и разностей, а также

для абс. шкал. В соответствии с этим положением единицы измерений, охватываемые междунар. системой единиц, соответствуют величинам, описываемым только шкалами отношений и разностей. Конкретные матем. ф-лы в науке и технике могут связывать также только такие величины и разности величин, к-рые описываются соответственно шкалами отношений, разностей и абсолютными. Поэтому измерения в шкалах порядка и наименований иногда наз. оцениванием.

Для шкал отношений и разностей в нек-рых случаях оказывается недостаточным установление только единиц измерений. Так, даже для таких величин, как , сила света, темп-pa, к-рым в международной системе единиц соответствуют осн. единицы - , кандела, кельвин, практич. системы измерений опираются также на спец. Ш. и. Кроме того, сами единицы в ряде случаев определяются с использованием фундаментальных физических констант или метрологич. констант (см., напр., Кандела).

По мере развития метрологии наблюдается тенденция рассматривать в качестве объектов измерений все новые, и не только физические, свойства и соответствующие им величины. Так, напр., формируется и описан метрологич. подход к изучению и описанию свойств биол., психологич., социальных (в т. ч. экономических) систем, создаются новые и совершенствуются уже существующие Ш. и.

Лит.: Пфанцагль И., Теория измерений, пер. с англ., M., 1976; Кнорринг В. Г., Теоретические основы информационно-измерительной техники. Основные понятия теории шкал. Конспект лекций. Л., 1983; Пиотровский Я., Теория измерений для инженеров, пер. с польск., M., 1989; Брянский Л. H., Дойников А. С., Краткий справочник метролога, M., 1991; Кнорринг В. Г., Шкалы, используемые при измерениях, "Измерит. техника", 1992. №6, с. 11; Брянский Л. H., Дойников А. С., Крупин Б. H., Шкалы, единицы и

Многообразные проявления конкретного свойства объектов измерения образуют множество, элементы которого находятся в определенных логических отношениях между собой. Отображение элементов этого множества на систему условных знаков с аналогичными отношениями образуют шкалу измерений данного свойства. Термин «шкала» происходит от латинского слова scala - лестница. Примерами знаковых систем являются множества: обозначений (названий) объектов, классификационных символов или понятий, названий состояния объекта, баллов оценки состояний объекта, упорядоченных чисел и т.д.

В метрологической практике термин «шкала» имеет, как минимум, два различных значения. Во-первых, шкалой называется отсчет- ное устройство аналогового средства измерений. Шкала в этом значении термина называется шкалой средства измерений. Во-вторых, шкалой считается порядок определения (оценки, измерения) и обозначения различных проявлений конкретного свойства объектов измерений. В этом значений шкалу следует называть шкалой измерений.

Шкала измерений - одно из основополагающих понятий современной метрологии. Принято различать пять основных типов шкал измерений:

  • 1) шкала наименований (классификации);
  • 2) шкала порядка (рангов);
  • 3) шкала разностей (интервалов);
  • 4) шкала отношений;
  • 5) абсолютная шкала.

Шкалы наименований и порядка, как не имеющие единиц измерения, относятся к неметрическим шкалам, а шкалы разностей и отношений - к метрическим.

Неметрические шкалы. Качественное свойство объекта отражает шкала наименований. Ее элементы характеризуются только отношениями эквивалентности (равенства) и могут быть упорядочены по сходству (близости) качественного проявления конкретного свойства объекта. Такое свойство нельзя назвать величиной.

Примером шкалы наименований является шкала оценки цвета объекта по наименованиям (красный, оранжевый, желтый, зеленый и т.д.). Роль эталона такой шкалы выполняет стандартизованный атлас цветов, систематизированный по их сходству. «Измерение», а точнее, оценку по шкале цвета осуществляют путем сравнения образцов цвета из атласа с цветом исследуемого объекта (при определенном освещении) и установления эквивалентности их цветов.

Шкалами наименований являются любые классификационные системы, например: шкалы-классификации растений и животных по К. Линнею, шкала запахов, шкала классификации кристаллов по группам симметрии, шкала групп крови (в медицине), шкала видов яда (в криминалистике) и многие другие.

Шкала порядка описывает свойство, для которого имеет смысл не только отношение эквивалентности, но и отношение порядка по возрастанию или убыванию количественного проявления свойства.

В Российской Федерации действует более 50 стандартов и других нормативных документов, которые регламентируют применение различных шкал порядка. Примерами таких шкал являются шкалы чисел твердости, шкала вязкости, шкала светочувствительности фотоматериалов, шкалы баллов силы ветра, землетрясений и волнения моря, шкалы оценок в учебных заведениях, шкала сложности пожаров, международная шкала оценки событий на АЭС. Специализированные шкалы порядка широко применяют при испытаниях различных видов продукции.

Неметрические шкалы подразделяются на непрерывные и дискретные. Примерами непрерывных шкал могут служить шкалы цвета, шкалы твердости металлов (Бринелля, Виккерса, Роквелла и Шора).

Дискретные шкалы содержат некоторое определенное число элементов - баллов, символов, знаков, классов эквивалентности, таких, как шкалы баллов оценки знаний учащихся (5-, 10-, 12-, 20- и 100-балльные), 12-бальная шкала силы ветра Бофорта, 10-балльные шкалы состояния поверхности моря, шкала твердости минералов Мооса, шкала цветов по наименованиям. Так, специализированный для полиграфии атлас цветов содержит 1358 материальных образцов цвета.

Метрические шкалы. Метрические шкалы также имеют несколько разновидностей.

Шкала разностей описывает свойство, для которого имеют смысл не только отношения эквивалентности и порядка, но и отношения аддитивности, т.е. суммирования интервалов (разностей между количественными проявлениями свойства). Шкала разностей имеет условную (принятую, как правило, в международных соглашениях) единицу измерения и условный нуль, опирающийся на какую-либо реперную точку. С разностями отсчетов по шкале интервалов допустимо выполнять любые линейные преобразования (арифметические операции).

Шкалами разностей обычно описываются интервальные скалярные величины. Примерами шкал разностей являются шкалы интервалов времени, шкалы длин, температурные шкалы - по Цельсию, Фаренгейту, Реомюру.

Шкала отношений описывает свойство, к множеству количественных проявлений которого применимы отношения эквивалентности и порядка. В шкале отношений существует начало отсчета (нулевое значение), соответствующее пределу бесконечно малого проявления количественного свойства, и условная (принятая, обычно, международными соглашениями) единица измерения. В шкалах отношений допустимы все арифметические и статистические операции.

К некоторым шкалам отношений применимы только операции вычитания и деления. Эти шкалы называют шкалами отношений первого рода - пропорциональными. Примером таких шкал является термодинамическая температурная шкала. Здесь допустимо рассчитывать разности и отношения термодинамических температур различных объектов, но сумма температур, фактически, не имеет смысла.

В шкалах отношений второго рода - аддитивных - возможна также операция суммирования. Примером такой шкалы является шкала массы. Допустимо вычислять не только разности и отношения масс различных объектов, но и их суммы (масса изделия, состоящего из нескольких блоков и элементов; суммарная масса или вес транспортируемых грузов и т.д.).

К шкалам отношений также относятся: шкалы давления, энергии (пропорциональные), шкалы силы, мощности (аддитивные).

Метрические шкалы широко применяются в науке и технике и составляют основу Международной системы единиц. Метрические шкалы допускают изменения определений своих единиц. При этом размеры самих единиц не изменяются, а лишь уточняются. Так, в течение XX в. трижды менялось определение секунды, четыре раза - определение метра, три раза - канделы. При каждом изменении преследовалась определенная цель - повышение точности реализации соответствующей шкалы. Например, с принятием каждого нового определения метра и секунды точность их эталонов повышалась на один-два порядка.

Абсолютная шкала. Эта шкала обладает всеми признаками шкалы отношений, но дополнительно имеет однозначное определение единицы измерения. Она используется для измерения относительных величин - безразмерного отношения одноименных величин. Единицы абсолютных шкал безразмерны (разы, проценты, доли и т.п.), поэтому они не являются производными и сочетаются с любыми системами единиц. Единицы абсолютных шкал можно называть надсистемными.

Примерами абсолютных шкал являются шкалы измерения коэффициентов усиления, отражения, поглощения, амплитудной модуляции, полезного действия, трения скольжения, добротности колебательной системы, плоского и телесного углов и др.

Таким образом, оказывается возможным выражать значения размерных величин в безразмерных единицах. Сами величины при этом называют безразмерными. Примерами безразмерных величин являются:

  • а) отношение амплитуд переменных синусоидальных сигналов (токов, напряжений и др.), которое определяется логарифмической единицей измерения бел (часто используется децибел );
  • б) высота звука в музыке (единица измерения - октава, опорное значение - / = 440 Гц - высота звука ноты «ля» первой октавы).

Рассмотрим примеры измерительных шкал.

Шкалы измерения цвета. Цвет - одно из свойств объекта, воспринимаемое человеком в виде зрительного ощущения. В процессе зрительного восприятия мы как бы «присваиваем» объекту тот или иной цвет. Цветовое ощущение возникает в результате воздействия на сетчатку глаза цветового стимула - видимого излучения.

При уточненном описании цвета используют три характеристики:

  • 1) цветовой тон (цветность), т.е. оттенок цвета, который ассоциируется в нашем сознании с окраской объекта определенным типом пигмента, краски, красителя;
  • 2) насыщенность, которая характеризует степень выражения (уровень проявления) цветового тона и связывается с количеством (концентрацией) пигмента;
  • 3) светлота (уровень яркости), которая связывается с количествами белого и черного пигментов или с освещенностью.

Цвета различаются глазом человека прежде всего качественно. Поэтому шкалы измерений цвета являются шкалами наименований, которые могут быть упорядочены по признаку близости (сходства) цветов. Кроме того, качественно неразличимые цвета (т.е. цвета одинаковой цветности) могут отличаться количественно по яркости (светлоте). Методы измерения и количественного выражения цвета и цветовых различий изучает колориметрия.

Экспериментально установлено, что любой цвет можно получить путем смешения в определенных пропорциях трех основных цветов. Наиболее широко используется система КЗС из красного, зеленого и синего основных цветов. Символические шкалы наименований цветов материализованы в виде атласов и эталонированных образцов. Отечественный «Атлас стандартных образцов цвета» (1000 образцов) предназначен для метрологического обеспечения атласов цвета отраслевого назначения.

Метрологическое обеспечение колориметрии опирается на государственный эталон координат цвета и координат цветности и государственную поверочную схему.

Шкалы твердости материалов. Твердостью называют особое свойство материалов, которое проявляется в их способности оказывать сопротивление всяким попыткам упруго или пластично деформировать участок поверхности тела или оторвать частицы материала с этого участка. Реальные тела обладают твердостью в различной степени. Если данное тело оставляет след на поверхности другого тела при царапании, то его материал считается тверже. Современное состояние науки о твердости не позволяет оценить твердость материала какой-то одной физической константой. Поэтому твердость характеризуют величиной (баллом, классом, числом твердости), которая измерена одним из известных методов в определенных условиях.

Основоположником технических измерений твердости считается французский физик Р. Реомюр. Он предложил в 1772 г. классификацию приборов для измерения твердости, которая сохранила свое значение до наших дней. Первая минералогическая шкала твердости была разработана немецким ученым Ф. Моосом в 1811 г. Эта шкала содержит 10 реперных точек (баллов), соответствующим твердости известных минералов. Из них наименьшей твердостью обладает тальк (1 балл), наибольшей - алмаз (10 баллов) (табл. 7.2). Там же представлены классы твердости по шкале Хрущева, разработанной в 1966 г. и дающей более точную оценку твердости минералов.

Минералогические шкалы твердости

Таблица 7.2

Одна из применяемых в настоящее время шкал измерения твердости металлов была разработана шведским инженером Ю.А. Бринел- лем (1900). Индентор (шарик диаметром D из закаленной стали или твердого сплава) вдавливается в исследуемую поверхность под действием известного усилия в течение определенного времени. За меру твердости по Бринеллю (НВ ) принимают величину отношения усилия Р (в ньютонах) к площади поверхности (в миллиметрах квадратных) сферического отпечатка диаметром d:

Результат измерения твердости по методу Бринелля должен содержать информацию об условиях проведения испытания. Например, запись НВ 10/750/30-140 означает, что твердость исследуемого материала составила 140 единиц твердости по Бринеллю и получена при вдавливании шарика диаметром 10 мм под нагрузкой Р = 750 кгс (1 кгс = 9,81 Н) в течение 30 с.

Шкалы измерения времени. С точки зрения философии время - это одна из форм существования материи. В физике пространство и время определяются как фундаментальные структуры координации объектов и их состояний. Само время обусловливается системой отношений, отображающих координацию сменяющих друг друга состояний или явлений (последовательность, длительность и т.д.).

Термины в области измерения времени, обязательные для применения во всех видах документации и рекомендуемые для применения в учебниках, учебных пособиях, технической и справочной литературе, установлены межгосударственным стандартом «ГСИ. Измерения времени и частоты. Термины и определения». Приведем некоторые из них:

  • ? момент события - положение события во времени;
  • ? интервал времени - время, истекшее между моментами двух событий;
  • ? начальный момент - условное начало отсчета времени или условный нуль времени;
  • ? шкала времени - непрерывная последовательность интервалов времени определенной длительности, отсчитываемая от начального момента. Для шкалы времени устанавливают условный нуль, единицу величины и порядок корректировки;
  • ? календарь - система исчисления продолжительности длительных интервалов времени, основанная на периодичности явлений природы и связанная с движением небесных светил;
  • ? дата - форма записи во всех документах, фиксирующая числовое выражение момента события (эпохи) в соответствии с установленными для данного календаря правилами. Запись состоит из порядков номера текущего года от начала летоисчисления, порядкового номера (или названия) текущего месяца и порядкового номера текущих от начала месяца суток. Наиболее распространенные формы записи дат 2014.10.21, 21.10.2014, 21 октября 2014 г.;
  • ? всемирное время - общее обозначение шкал времени, основанных на вращении Земли вокруг своей оси;
  • ? Международная шкала атомного времени TAI - шкала атомного времени, рассчитываемая МБМВ;
  • ? национальная шкала атомного времени TA(k) - шкала атомного времени, воспроизводимая национальным эталоном; для Российской Федерации - TA(SU);
  • ш координированные шкалы времени - шкалы времени, в которых числовые выражения положения любого события отличаются друг от друга на значение, не превышающее установленного допуска;
  • ? часовой пояс - 1/24 часть поверхности Земли, ограниченная меридианами, причем нулевой часовой пояс расположен симметрично относительно нулевого (Гринвичского) меридиана. Нумерацию часовых поясов ведут от 0 до 23 с запада на восток;
  • ? поясное время - единое время в пределах часового пояса, исчисляемое в национальной шкале координированного времени и отличающееся от него на целое число часов, равное номеру часового пояса;
  • ? Государственная служба времени и частоты и определения параметров вращения Земли - постоянно функционирующая система технических средств и организаций, объединенных общей деятельностью, направленной на непрерывное получение высокоточной времячастотной информации и данных о параметрах вращения Земли для обеспечения потребителей в экономике, науке, обороне и в быту, в том числе населения страны;
  • ? частота - величина, измеряемая числом одинаковых событий в единицу времени. Единицей частоты процесса, у которого период повторения равен 1 с, является 1 Гц (герц);
  • ? мера частоты и времени - техническое средство, используемое для измерений и предназначенное для воспроизведения частоты заданного размера и формирования шкалы времени с нормированными метрологическими характеристиками. Прецизионную меру частоты (времени), относительная погрешность по частоте которой на протяжении одного года не превышает ±5 ? 10 9 , называют стандартом частоты (времени);
  • ? часы - устройство для измерений и показа времени;
  • ? репер частоты - периодически включаемая мера частоты. Метрологический цезиевый репер частоты воспроизводит репер единиц времени и частоты через частоту спектральной линии цезия-133.

Все шкалы измерения времени нашего макромира не имеют естественного нуля, «начала всех времен». Они начинаются с выбранных по соглашению условных нулей - реперных точек, называемых эпохами. Единицы измерения времени также условны. Для всех систем единиц, начиная с «абсолютной» системы К. Гаусса (1832), единица измерения - секунда - является одной из основных единиц. Интервалы времени обладают свойствами пропорциональной шкалы отношений.

Всю совокупность методов измерения времени очень условно можно подразделить на три группы:

  • 1) измерение больших периодов времени (от десятков тысяч до миллиардов лет); методы измерения этих периодов базируются на явлении радиоактивного распада ядер различных изотопов;
  • 2) измерение длительных интервалов времени (от суток до тысячи лет); методы измерения таких интервалов связаны с использованием различных календарей;
  • 3) измерение малых промежутков времени (от часов до долей секунды); методы измерений малых промежутков базируются на точных и сверхточных (эталонных) измерениях.

Методы и средства измерения времени появились еще до нашей эры и постоянно совершенствуются. Самым древним методом измерения времени является определение его по звездам. Каждое созвездие появляется над горизонтом в строго определенное время. Луч, проведенный от двух крайних звезд созвездия «Большая медведица» в направлении на Полярную звезду, вращается против часовой стрелки, и по этому лучу также можно определять время. Аналогично определяется время по солнечным часам. Для измерения небольших промежутков времени были созданы водяные и песочные часы.

В XVII-XVIII вв. нашей эры произошел быстрый прогресс в развитии механических часов. Так, в 1965 г. наилучшая конструкция механических часов с анкерным спуском и изохронным подвесом имела суточную погрешность 2 ? 10~ 9 с. Появившиеся позднее кварцевые часы имели погрешность уже всего 3 ? 1(Г 12 с. Диаграмма увеличения точности измерения интервалов времени на протяжении нашей эры показана на рис. 7.4. На этой диаграмме точность представлена в виде величины, обратной величине относительной погрешности измерения.

Температурные шкалы. Температурав современном представлении - это величина, характеризующая состояние термодинамического равновесия макроскопической системы. Ставить вопрос о температуре микроскопических объектов (например, элементарных частиц) некорректно.

Рис. 7.4.

В отличие от многих других величин (масса, длина, время и др.) температура - величина неаддитивная, поэтому ее невозможно измерить непосредственно, прямым методом, без использования температурной шкалы. Измерять температуру приходится косвенным методом, используя уравнения состояния, связывающие ее с другими величинами, прямое измерение которых возможно (объем, давление, электрическое сопротивление). Для этой цели разрабатывается практическая температурная шкала, устанавливающая функциональную


Рис. 7.5.

Проблемами измерений температуры, создания температурных шкал занимались многие ученые. Изобретателем воздушного термометра (1592) считается Г. Галилей, он же ввел в практику само понятие «температура». Одну из первых температурных шкал (1664) создал англичанин Р. Гук. Известны также температурные шкалы И. Ньютона (1701), Г. Фаренгейта (1724), Р. Реомюра (1730), М.В. Ломоносова (1740), А. Цельсия (1742), Кельвина (1848). Соотношения между различными температурными шкалами представлены на рис. 7.5.

Все практические температурные шкалы опираются на две выбранные опорные (реперные) точки и являются шкалами разностей (интервалов). Для многих из этих шкал в качестве опорных были выбраны достаточно стабильные точки таяния льда и кипения воды. Разность между температурами реперных точек называется основным интервалом шкалы, по которому определяется величина единицы измерения температуры.

Для обеспечения единства измерений температуры в международном масштабе в 1990 г. была введена международная температурная шкала МТШ-90. При разработке этой шкалы был принят ряд опорных (реперных) точек, температуры которых представлены в табл. 7.3.

Температуры реперных точек шкалы МТШ-90

Таблица 7.3

Окончание

Состояние фазового равновесия

Принятое значение

Точка плавления галлия

302,9146

Точка затвердевания индия

429,7485

156,5985

Точка затвердевания олова

Точка затвердевания цинка

Точка затвердевания алюминия

Точка затвердевания серебра

Точка затвердевания золота

Точка затвердевания меди

← Вернуться

×
Вступай в сообщество «lenew.ru»!
ВКонтакте:
Я уже подписан на сообщество «lenew.ru»