Как погиб Фаэтон? Планета Фаэтон. Научные исследования планет Солнечной системы Что было между марсом и юпитером

Подписаться
Вступай в сообщество «lenew.ru»!
ВКонтакте:

Пояс астероидов – это область в космическом пространстве, расположенная между орбитами Марса и Юпитера.

Первые астероиды пояса были обнаружены астрономами еще вначале XIX века. Сегодня, пояс астероидов известен астрономам, как одно из крупнейших скоплений космических объектов, находящихся в Солнечной системе. Для многих ученых он представляет изрядный научный интерес.

Общие сведения

На сегодняшний день, пояс астероидов насчитывает свыше 300 000 именованных объектов. По состоянию на 6 сентября 2011 года количество именованных астероидов пояса достигло 285 075. Крупнейшие образования пояса астероидов названы в честь римских божеств: Церера, Веста, Паллада и Гигея. Церера – это самый большой объект пояса астероидов; но ученые считают данное небесное тело карликовой планетой – подробнее об этом мы поговорим ниже.


Все астероиды обнаруженные с 1980 года

Хотя открытие и изучение пояса астероидов немыслимо без науки, свое начало история исследования этого астрономического чуда берет в древних мифах и легендах.

Загадочный Фаэтон

В школьные годы, читая популярную научно-фантастическую литературу, многие из нас мечтали, достигнув зрелого возраста, стать отважными покорителями космического пространства. Мы ярко представляли себе свечение далеких галактик и близких нам планет, которые мы страстно желали посетить. Одной из таких планет являлся загадочный Фаэтон – великая, но мертвая планета.

Легенда об этой планете ярко описана в книге Александра Казанцева «Фаэты». В этой книге поведана история, как алчные жители планеты Фаэтон – фаэты, загубили свою землю, взорвав ее, после чего она распалась на бессчетное количество маленьких кусочков. Считается, что именно из этих кусочков и образовался сегодняшний пояс астероидов. Похожая версия происхождения этого скопления небесных тел прослеживается и в древних шумерских мифах и легендах.

Мифы и легенды – это, конечно, хорошо. Но, что же говорит о происхождении пояса астероидов наука?

Происхождение пояса астероидов

В отличие от древних сказок, в научном сообществе принято считать, что пояс астероидов – это отнюдь не обломки взорвавшейся планеты, а скопление протопланетного вещества. Такая теория, скорее всего, верна, так как, последние данные показывают, что между Марсом и Юпитером планета попросту не могла образоваться. Причина этого – сильное гравитационное влияние Юпитера. Именно оно не дало протопланетному веществу (космической пыли, из которой создаются планеты) образоваться в полноценное небесное тело на таком далеком от Солнца расстоянии.

Исследование метеоритов

Мелкая пыль в поясе астероидов, возникшая в результате столкновений астероидов, создаёт явление, известное как зодиакальный свет.

Исследования метеоритов, которые вышли из пояса астероидов и упали на Землю, показывают, что большинство из них относится к хондритам – метеоритам, в которых, в отличие от ахондритов, не происходила сепарация веществ, как обычно бывает в процессе формирования планет. Данные исследования лишний раз подтверждают вышеизложенную гипотезу, которая опираясь на реальные научные данные, выглядит гораздо убедительнее той версии, которую нам предлагают шумерские мифы.

Сегодня, ученым отлично известно, что пояс астероидов – отнюдь не сказочная, расколовшаяся планета, а остатки протопланетного вещества, которое появилось еще во времена зарождения Солнечной системы. Однако мифы и предания о легендарном Фаэтоне до сих пор живы и заставляют многих людей по всему миру проявлять интерес к такому астрономическому явлению, как пояс астероидов.

Открытие пояса астероидов

Первый, кто задумался над существованием загадочной планеты Фаэтон, был немецкий физик Иоганн Тициус. В 1766 году он нашел формулу, согласно которой можно было рассчитать примерное расположение всех планет Солнечной системы. Суть этой формулы заключалась в том, что порядковое расстояние планет от Солнца возрастает в геометрической прогрессии. Именно при помощи данной формулы в 1781 году был открыт Уран, что убедило многих ученых в правдивости закона межпланетного расстояния.

Согласно правилу Тициуса, на расстоянии между Марсом и Юпитером должна была существовать планета.

Открытие Цереры

1 января 1801 года итальянский астроном Джузеппе Пиацци, наблюдая за звездным небом, открыл первый объект пояса астероидов – карликовую планету Цецера. Затем в 1802 году был открыт еще один крупный объект – астероид Паллада. Оба этих космических тела двигались примерно на одинаковой орбите от Солнца – 2,8 астрономических единицы. После открытия в 1804 году Юноны и в 1807 Весты – крупных небесных тел, двигавшихся по той же самой орбите, что и предыдущие, открытия новых объектов в этой области космоса прекратились до 1891 года. В 1891 году немецкий ученый Макс Вольф, используя метод астрофотографии, в одиночку обнаружил между Марсом и Юпитером 248 мелких астероидов. После чего, открытия новых объектов в этой области неба посыпались одно за другим.

Современные исследования

Пояс астероидов вызывал интерес ученых не только в течение прошлых столетий, но и в последние годы. Первым серьезным достижением современных технологий в области изучения этого скопления небесных объектов был полет космического аппарата «Пионер-10», который был создан для изучения Юпитера. Этот аппарат первым прошел сквозь пояс астероидов. С тех пор сквозь пояс пролетело еще 9 космических аппаратов. Ни один из них во время путешествия не пострадал от столкновения с астероидом.

Пролеты космических аппаратов

Первым аппаратом, сделавшим снимки астероидов, была космическая станция «Галилео». В 1991 году она сфотографировала астероид Гаспра, а в 1993 году – Ида. После того, как были получены эти снимки, НАСА приняло решение, что любой космический аппарат, который будет пролетать недалеко от пояса астероидов, должен попытаться сделать фотоснимки этих объектов. С тех пор в непосредственной близости от астероидов проходили такие космические аппараты, как «NEAR Shoemaker», «Стардаст», всемирно известная «Розетта» и другие.

Наука

Планета Нептун раньше относилась также к разряду гипотетических, её никогда не видели, но её существование предположили.

На самом деле учёные предполагали и предполагают существование большего количества планет.

Некоторые с течением времени покидают этот список, другие, возможно, на самом деле существовали в прошлом, и вероятно, даже существуют и сейчас.

10. Планета Х

В начале 1800-х годов астрономы знали о существовании всех больших планет в нашей солнечной системе, кроме Нептуна. Они также были знакомы с законами движения Ньютона и с гравитацией, которые использовались для предсказания перемещения планет.

При соотнесении этих предсказаний с фактическим наблюдаемым движением было замечено, что Уран "не пошёл" туда, куда предполагалось. Тогда французский астроном Алексис Бувар (Alexis Bouvard) задался вопросом, могла ли гравитация невидимой планеты сдвинуть Уран с намеченного курса.

После обнаружения Нептуна в 1846 году многие астрономы решили проверить, достаточно ли его сила притяжения мощна для того, чтобы объяснить наблюдаемое движение Урана. Ответ оказался отрицательным.

Возможно, существует ещё одна невидимая планета? Существование девятой планеты было предложено многими астрономами. Самым дотошным искателем девятой планеты был американский астроном Персиваль Лоуэлл (Percival Lowell), который назвал разыскиваемый объект "Планета Х".

Лоуэлл построил обсерваторию с целью найти Планету Х, но так никогда и нашёл. Спустя 14 лет после его смерти, астрономы обнаружили Плутон, но его сила притяжения также не была достаточно мощной, чтобы объяснить наблюдаемое движение Урана, поэтому научный мир продолжал искать планету Х.

Поиски продолжались до тех пор, пока зонд Вояджер-2 не прошёл мимо Нептуна в 1989 году. Тогда-то и было обнаружено, что масса Нептуна была измерена неверно. Обновлённые расчёты массы объяснили движение Урана.

Неизвестная планета

9. Планета между Марсом и Юпитером

В 16 веке Иоганн Кеплер (Johannes Kepler) заметил существование огромной пропасти между орбитами Марса и Юпитера. Он предположил, что там может быть планета , но не стал её искать.

После Кеплера многие астрономы стали замечать закономерности в орбите планет. Приблизительные размеры орбит от Меркурия до Сатурна - 4, 7, 10, 16, 52, 100. Если вычесть 4 от каждого из этих чисел, то получается – 0, 3, 6, 12, 48 и 96.

Примечательно, что 6 =3+3, 12=6+6, 96=48+48. Между 12 и 48 остаётся странная пустота.

Астрономы озадачились вопросом, а не пропустили ли они планету, которая, по подсчётам, должна располагаться между Марсом и Юпитером. Как писал немецкий астроном Элерт Бодэ (Elert Bode): "После Марса обнаружено огромное пространство, в котором до сих пор не было выявлено ни одной планеты. Можно ли верить, что основатель Вселенной оставил это пространство пустым? Конечно, нет".

Когда в 1781 году был открыт Уран, размер его орбиты чётко вписался в описанную выше закономерность. Это выглядело как закон природы, который позже стал известен как закон Бодэ или закон Тициуса-Бодэ, однако, пресловутый разрыв между Марсом Юпитером всё равно оставался.

Элерт Бодэ

Венгерский астроном по имени Барон Франц фон Зак (Baron Franz von Zach) также убедился в том, что закон Боде работает, а это значит, что между Марсом и Юпитером существует неоткрытая планета.

Он провёл несколько лет в поисках, но так ничего и не нашёл. В 1800 году он организовал группу из нескольких астрономов, которые систематически занимались исследованиями. Одним из них был итальянский католический священник Джузеппе Пиацци (Giuseppe Piazzi), который в 1801 году обнаружил объект, орбита которого точно совпадала по размерам .

Однако, объект, названный Церера , оказался слишком мал, чтобы называться планетой. На самом деле Церера считался астероидом на протяжении многих лет, потому как он был крупнейшим в главном поясе астероидов.

Сегодня Церера относится к карликовым планетам, как и Плутон. Стоит добавить, что закон Боде перестал работать, когда был найден Нептун, потому что размер его орбиты не соответствовал принятому шаблону.

Галактика: неизвестные планеты

8. Тейя

Тейя – это имя, данное гипотетической, размером с Марс планете, которая, вероятно, столкнулась с Землёй около 4,4 миллиардов лет назад, что могло привести к образованию Луны. Предполагается, что имя планете дал английский геохимик Алекс Хэллидей (Alex Halliday). Так звали мифологического греческого титана, который подарил жизнь богине луны Селене.

Стоит отметить, что происхождение и формирование Луны до сих пор является предметом активного научного обсуждения. В то время, как вышеописанная история является основной версией (Giant Impact Hypothesis), она не единственная.

Возможно, Луна была каким-то образом "захвачена" гравитационным полем Земли . А может быть Земля и Луна сформировались парно примерно в одно и то же время. Важно добавить, что Земля в самом начале своего образования, вероятно, пострадала от столкновения со многими крупными небесными телами.

7. Вулкан

Уран был не единственной планетой, чьё наблюдаемое движение не совпадало с прогнозами. Ещё одна планета обладала такой проблемой – Меркурий.

Расхождение впервые было обнаружено математиком Урбаном Леверье (Urbain Le Verrier), который выявил, что нижняя точка в эллиптической орбите Меркурия (перигелий) двигалась вокруг Солнца быстрее, чем показывали его расчёты.

Несоответствие было незначительным, но дополнительные наблюдения показали, что математик прав. Он предположил, что расхождения вызваны гравитационным полем неоткрытой планеты, вращающейся внутри орбиты Меркурия , которую он назвал Вулкан.

Урбан Леверье

За этим последовали многочисленные "наблюдения" за Вулканом. Некоторые результаты наблюдений оказались просто солнечными пятнами, однако, были и другие, сделанные уважаемыми астрономами и казавшиеся правдоподобными.

Когда в 1877 году Леверье умер, он считал, что существование Вулкана подтверждено . Тем не менее, в 1915 году была опубликована общая теория относительности Эйнштейна, и оказалось, что движение Меркурия предсказывалось верно.

Вулкан исчез, но люди продолжали искать объекты, вращающиеся вокруг Солнца внутри орбиты Меркурия. Безусловно, ничего "планетоподобного" там нет, но там вполне могут «обитать» размером с астероид объекты, которые были названы "вулканоидами".

6. Фаетон

Немецкий астроном и врач Генрих Ольберс (Heinrich Olbers) обнаружил второй известный астероид под названием Паллас в 1802 году. Он предположил, что два найденных астероида могут быть фрагментами древней планеты, которая была разрушена под воздействием каких-то внутренних сил или при столкновении с кометой.

Подразумевалось, что помимо Цереры и Палласа существуют ещё объекты, и действительно, вскоре были обнаружены ещё два – Юнона в 1804 году и Веста в 1807 году.

Планета, которая якобы распалась с образованием главного пояса астероидов, стала известной как Фаетон, названная в честь персонажа греческой мифологии, везшего солнечную колесницу.

Однако, гипотеза о Фаетоне столкнулась с проблемами. К примеру, сумма масс всех астероидов главного пояса намного меньше, чем масса планеты. Кроме того, между астероидами существует очень много отличий. Как они могли произойти от одного "родителя"?

Сегодня большинство планетарных учёных полагают, что астероиды образуются из-за постепенного слипания между собой небольших фрагментов.

Неизвестное в космосе

5. Планета V

Это ещё одна гипотетическая планета между Марсом и Юпитером, но причины, по которым полагается, что она когда-то существовала, совершенно отличаются от вышеуказанных.

История начинается с миссии Аполлон на Луну. Астронавты Apollo принесли много лунных камней на Землю, некоторые из которых образовались в результате плавления горных пород в тот период, когда нечто наподобие астероида столкнулось с Луной и генерировало достаточное количество тепла, чтобы расплавить камень.

Учёные использовали радиометрическое датирование, чтобы выявить, когда эти породы охладились. Они пришли к выводу, что наиболее холодный период – это примерно 3,8 – 4 миллиарда лет назад.

Судя по всему, в течение этого периода времени с Луной сталкивались многие кометы и астероиды. Этот период известен как "Поздняя Тяжёлая Бомбардировка"(ПТБ). "Поздняя" из-за того, что случилась после большинства других.

Раньше столкновения в Солнечной системе происходили с завидной регулярностью, но сейчас время прошло. В связи с этим возникает вопрос: что случилось с временно увеличившимся количеством астероидов, столкнувшихся с Луной?

Около 10 лет назад Джон Чемберс (John Chambers) и Джек Лиссаер (Jack J. Lissauer) предположили, что причиной, возможно, была давно потерянная планета, которую они назвали "Планета V".

Согласно их теории, Планета V находилась между орбитой Марса и главным поясом астероидов перед тем, как гравитация внутренних планет заставила Планету V "съехать" в пояс астероидов, где она сбила траектории многих из них, что, в конечном счёте, привело к их столкновению с Луной.

Также полагается, что Планета V столкнулась с Солнцем . Эта гипотеза была встречена критикой, потому как не все согласны с тем, что ПТБ имело место быть, но даже если и так, то должны быть и другие возможные объяснения, кроме как наличие Планеты V.

4. Пятый газовый гигант

Ещё одно объяснение ПТБ – это так называемая Ницца – модель, названная в честь французского города, где впервые была разработана. Согласно этой модели, Сатурн, Уран и Нептун – внешние газовые гиганты – зародились на небольших орбитах, окружённых облаком астероидных размеров объектов.

Со временем некоторые из этих мелких объектов проходили рядом с газовыми гигантами. Такие близкие встречи способствовали расширению орбит газовых гигантов, хотя и очень медленными темпами.

Орбита Юпитера в действительности стала меньше. В какой-то момент орбиты Юпитера и Сатурна вступили в резонанс, в результате чего Юпитер стал оборачиваться вокруг Солнца дважды, в то время как Сатурн успевал только один раз. Это вызвало хаос.

По стандартам Солнечной системы всё происходило очень быстро. Почти круговые орбиты Юпитера и Сатурна напряглись, и Сатурн, Уран и Нептун несколько раз столкнулись. Облако мелких объектов также было взбудоражено.

В совокупности это привело к ПТБ . После того, как всё прошло, Юпитер, Сатурн, Уран и Нептун "обзавелись" орбитами, которыми они обладают и по сей день.

По этой модели можно сказать и о других особенностях Солнечной системы, таких как троянские астероиды Юпитера, однако, оригинальная модель не объясняет всё. Она нуждается в модификации.

Пояс астероидов – область Солнечной системы, расположенная между орбитами Марса и Юпитера, являющаяся местом скопления множества объектов всевозможных размеров, преимущественно неправильной формы, называемых астероидами или малыми планетами.

Первые астероиды пояса были обнаружены астрономами еще в начале XIX века. Сегодня пояс астероидов известен астрономам как одно из крупнейших скоплений космических объектов, находящихся в Солнечной системе. Для многих ученых он представляет изрядный научный интерес.

Эту область также часто называют главным поясом астероидов или просто главным поясом, подчёркивая тем самым её отличие от других подобных областей скопления малых планет, таких как пояс Койпера за орбитой Нептуна, а также скопления объектов рассеянного диска и облака Оорта.

Общие сведения

Область пространства, располагающаяся от Солнца на расстоянии от 2,06 до 3,27 а. е., иногда называется ядром пояса астероидов и содержит до 93,4 % всех нумерованных астероидов.

На сегодняшний день пояс астероидов насчитывает свыше 300 000 именованных объектов. По состоянию на 6 сентября 2011 года количество именованных астероидов пояса достигло 285 075. Суммарная масса главного пояса равна примерно 4 % массы Луны, больше половины её сосредоточено в четырёх крупнейших объектах, которые названы в честь римских божеств: Церера (диаметр по экватору 950 км), Веста (диаметр – 529,2 км), Паллада (примерный диаметр – 532 км) и Гигея (диаметр 407,12 км). Церера – это самый большой объект пояса астероидов, ученые считают данное небесное тело карликовой планетой.

Астероиды движутся по орбитам вокруг Солнца в том же направлении, что и планеты, в зависимости от величины большой полуоси, их период обращения колеблется от 3,5 до 6 лет.
Температура на поверхности астероида зависит от расстояния до Солнца и величины его альбедо. Для частиц пыли на расстоянии 2,2 а. е. температурный диапазон начинается с 200 К (−73 °C) и ниже, а на расстоянии 3,2 а. е. уже со 165 К (−108 °C). Однако для астероидов это не совсем справедливо, поскольку из-за вращения температуры на его дневной и ночной сторонах могут существенно различаться.

Поверхность большинства астероидов диаметром более 100 м, вероятно, покрыта толстым слоем раздробленной породы и пыли, образовавшихся при падении метеоритов или собранных в процессе движения по орбите. Измерения периодов вращения астероидов вокруг своей оси показали, что существует верхний предел скоростей вращения для относительно крупных астероидов диаметром более 100 м, который составляет 2,2 часа.

На сегодняшний день известно, что почти каждый третий астероид входит в состав какого-либо семейства. Признаком принадлежности астероидов к одному семейству являются примерно одинаковые орбитальные параметры, такие как большая полуось, эксцентриситет и наклон орбиты, а также аналогичные спектральные особенности, последние указывают на общность происхождения астероидов семейства, образовавшихся в результате распада более крупного тела.

Меньшие ассоциации астероидов называются группами или кластерами.

Наряду с астероидами, в поясе существуют также шлейфы пыли, состоящие из микрочастиц радиусом в несколько сотен микрометров, которые образовались в результате столкновений между астероидами и их бомбардировки микрометеоритами. Эта пыль под действием солнечной радиации постепенно по спирали движется к Солнцу.

Сочетание астероидной пыли и пыли, выбрасываемой кометами, даёт явление зодиакального света. Это слабое свечение простирается в плоскости эклиптики в виде треугольника, и его можно увидеть в экваториальных районах вскоре после захода или незадолго перед восходом Солнца. Размеры частиц, которые его вызывают, в среднем колеблются в районе 40 мкм, а время их существования не превышает 700 тыс. лет. Наличие этих частиц свидетельствует о том, что процесс их образования происходит непрерывно.

В главном поясе, в зависимости от химического состава, выделено 3 основных спектральных класса астероидов: углеродные (класс C), силикатные (класс S) и металлические или железные (класс M). Все эти классы астероидов, особенно металлические, представляют интерес с точки зрения космической индустрии в целом и промышленного освоения астероидов в частности.

Хотя открытие и изучение пояса астероидов немыслимо без науки, история исследования этого астрономического чуда берет свое начало в древних мифах и легендах.

Мелкая пыль в поясе астероидов, возникшая в результате столкновений астероидов, создаёт явление, известное как зодиакальный свет.

Загадочный Фаэтон

Гипотеза о существовании Фаэтона часто используется в научной фантастике (особенно советской). Как правило, предполагается, что на Фаэтоне существовали разумные существа, которые своими действиями вызвали разрушение планеты. Легенда об этой планете ярко описана в книге Александра Казанцева «Фаэты». В этой книге поведана история, как алчные жители планеты Фаэтон – фаэты, загубили свою землю, взорвав ее, после чего она распалась на бессчетное количество маленьких кусочков. Считается, что именно из этих кусочков и образовался сегодняшний пояс астероидов. Похожая версия происхождения этого скопления небесных тел прослеживается и в древних шумерских мифах и легендах.

Эта версия лежит также в основе романа Михаила Чернолусского «Фаэтон», повестей Олеся Бердника «Катастрофа» и «Стрела времени» и Константина Брендючкова «Последний ангел», Николая Руденко «Сын Солнца - Фаэтон», в мультфильме о путешествии землян к поясу астероидов «Фаэтон - сын солнца», рассказа Георгия Шаха «Гибель Фаэтона».

Мифы и легенды – это, конечно, хорошо. Но, что же говорит о происхождении пояса астероидов наука?

В отличие от древних сказок, в научном сообществе принято считать, что пояс астероидов – это отнюдь не обломки взорвавшейся планеты, а скопление протопланетного вещества. Такая теория, скорее всего, верна, так как, последние данные показывают, что между Марсом и Юпитером планета попросту не могла образоваться. Причина этого – сильное гравитационное влияние Юпитера. Именно оно не дало протопланетному веществу (космической пыли, из которой создаются планеты) образоваться в полноценное небесное тело на таком далеком от Солнца расстоянии.

Исследования метеоритов, которые вышли из пояса астероидов и упали на Землю, показывают, что большинство из них относится к хондритам – метеоритам, в которых, в отличие от ахондритов, не происходила сепарация веществ, как обычно бывает в процессе формирования планет. Данные исследования лишний раз подтверждают вышеизложенную гипотезу, которая опираясь на реальные научные данные, выглядит гораздо убедительнее той версии, которую нам предлагают шумерские мифы.
Сегодня, ученым отлично известно, что пояс астероидов – отнюдь не сказочная, расколовшаяся планета, а остатки протопланетного вещества, которое появилось еще во времена зарождения Солнечной системы. Однако мифы и предания о легендарном Фаэтоне до сих пор живы и заставляют многих людей по всему миру проявлять интерес к такому астрономическому явлению, как пояс астероидов.

Открытие пояса астероидов

Своеобразной предысторией начала изучения пояса астероидов можно считать открытие зависимости, приблизительно описывающей расстояния планет от Солнца, получившей название правила Тициуса - Боде.

Впервые оно было сформулировано и опубликовано немецким физиком и математиком Иоганном Тициусом ещё в 1766 году, но несмотря на то, что ему, с указанными оговорками, удовлетворяли все шесть известных на то время планет (от Меркурия до Сатурна), правило долго не привлекало внимания. Так продолжалось до тех пор, пока в 1781 году не был открыт Уран, большая полуось орбиты которого точно соответствовала предсказанной данной формулой. После этого Иоганн Элерт Боде высказал предположение о возможности существования пятой от Солнца планеты между орбитами Марса и Юпитера, которая, согласно данному правилу, должна была находиться на расстоянии 2,8 а. е. и при этом до сих пор не была обнаружена. Открытие Цереры в январе 1801 года, причём именно на указанном расстоянии от Солнца, привело к усилению доверия к правилу Тициуса - Боде среди астрономов, которое сохранялось вплоть до открытия Нептуна, который выпадает из этого правила.

Астероид Веста

Церера, снимок межпланетного зонда Dawn

Ида и ее спутник Дактиль. Размер Иды 58 × 23 км, Дактиля - 1,5 км, расстояние между ними 85 км

1 января 1801 года итальянский астроном Джузеппе Пиацци, наблюдая за звездным небом, открыл первый объект пояса астероидов – карликовую планету Цецера. Затем в 1802 году был открыт еще один крупный объект – астероид Паллада. Оба этих космических тела двигались примерно на одинаковой орбите от Солнца – 2,8 астрономических единицы. После открытия в 1804 году Юноны и в 1807 Весты – крупных небесных тел, двигавшихся по той же самой орбите, что и предыдущие, открытия новых объектов в этой области космоса прекратились до 1891 года. В 1891 году немецкий ученый Макс Вольф, используя метод астрофотографии, в одиночку обнаружил между Марсом и Юпитером 248 мелких астероидов. После чего, открытия новых объектов в этой области неба посыпались одно за другим.

Полёт космического аппарата Dawn к Весте (слева) и Церере (справа)

Пояс астероидов вызывал интерес ученых не только в течение прошлых столетий, но и в последние годы. Первым серьезным достижением современных технологий в области изучения этого скопления небесных объектов был полет космического аппарата «Пионер-10», который был создан для изучения Юпитера и долетел до области главного пояса 16 июля 1972 года. Этот аппарат первым прошел сквозь пояс астероидов. С тех пор сквозь пояс пролетело еще 9 космических аппаратов. Ни один из них во время путешествия не пострадал от столкновения с астероидом.

Аппараты «Пионер-11», «Вояджер-1» и «Вояджер-2», а также зонд «Улисс» пролетали через пояс без запланированных или случайных сближений с астероидами. Аппарат «Галилео» стал первым космическим аппаратом, который сделал снимки астероидов. Первыми сфотографированными объектами стали астероид (951) Гаспра в 1991 году и астероид (243) Ида в 1993 году. После этого в НАСА была принята программа, согласно которой любой аппарат, пролетающий через пояс астероидов, должен, по возможности, пролететь мимо какого-либо астероида. В последующие годы космическими зондами и аппаратами были получены изображения ряда мелких объектов, таких как (253) Матильда в 1997 году с аппарата NEAR Shoemaker, (2685) Мазурский в 2000 году с «Кассини», (5535) Аннафранк в 2002 году со «Стардаст», (132524) APL в 2006 с зонда «Новые горизонты», (2867) Штейнс в 2008 году и (21) Лютеция в 2010 году с «Розетты».

Большинство изображений астероидов главного пояса, переданных космическими аппаратами, получены в результате краткого пролёта зондов вблизи астероидов на пути к основной цели миссии - для подробного изучения астероидов отправляли только два аппарата: NEAR Shoemaker, который исследовал (433) Эрос и Матильду, а также «Хаябуса», главной целью которого было изучение (25143) Итокава. Аппарат в течение длительного времени изучал поверхность астероида и даже, впервые в истории, доставил частицы грунта с его поверхности.

27 сентября 2007 года к крупнейшим астероидам Весте и Церере была отправлена автоматическая межпланетная станция Dawn. Аппарат достиг Весты 16 июля 2011 года и вышел на её орбиту. После изучения астероида в течение полугода он направился к Церере, которой достиг в 2015 году. Изначально предполагалось расширение его миссии для исследования Паллады.

Составное изображение северной полярной области астероида Эрос

Изображение астероида (253) Матильда

Состав

Углеродистые астероиды класса C, названные так из-за большого процента простейших углеродных соединений в их составе, являются наиболее распространёнными объектами в главном поясе, на них приходится 75 % всех астероидов, особенно большая их концентрация характерна для внешних областей пояса. Эти астероиды имеют слегка красноватый оттенок и очень низкое альбедо (между 0,03 и 0,0938). Поскольку они отражают очень мало солнечного света, их трудно обнаружить. Вполне вероятно, что в поясе астероидов находится ещё немало относительно крупных астероидов, принадлежащих к этому классу, но до сих пор не найденных из-за малой яркости. Зато эти астероиды довольно сильно излучают в инфракрасном диапазоне из-за наличия в их составе воды. В целом их спектры соответствуют спектру вещества, из которого формировалась Солнечная система, за исключением летучих элементов. По составу они очень близки к углеродистым хондритным метеоритам, которые нередко находят на Земле. Крупнейшим представителем этого класса является астероид (10) Гигея.

Вторым по распространённости спектральным классом среди астероидов главного пояса является класс S, который объединяет силикатные астероиды внутренней части пояса, располагающиеся до расстояния 2,5 а. е. от Солнца. Спектральный анализ этих астероидов выявил наличие в их поверхности различных силикатов и некоторых металлов (железо и магний), но практически полное отсутствие каких-либо углеродных соединений. Это указывает на то, что породы за время существования этих астероидов претерпели значительные изменения, возможно, в связи с частичным плавлением и дифференциацией. Они имеют довольно высокое альбедо (между 0,10 и 0,2238) и составляют 17 % от всех астероидов. Астероид (3) Юнона является самым крупным представителем этого класса.

Металлические астероиды класса M, богатые никелем и железом, составляют 10 % от всех астероидов пояса и имеют умеренно большое альбедо (между 0,1 и 0,1838). Они расположены преимущественно в центральных областях пояса на расстоянии 2,7 а. е. от Солнца и могут быть фрагментами металлических ядер крупных планетезималей (небесное тело, образующееся в результате постепенного приращения более мелких тел, состоящих из частиц пыли протопланетного диска; непрерывно притягивая к себе новый материал и накапливая массу, планетезимали формируют более крупное тело), вроде Цереры, существовавших на заре формирования Солнечной системы и разрушенных при взаимных столкновениях. Однако в случае с металлическими астероидами не всё так просто. В ходе исследований обнаружено несколько тел, вроде астероида (22) Каллиопа, спектр которых близок спектру астероидов класса M, но при этом они имеют крайне низкую для металлических астероидов плотность. Химический состав подобных астероидов на сегодняшний день практически неизвестен, и вполне возможно, что по составу они близки к астероидам класса C или S.

Одной из загадок астероидного пояса являются относительно редкие базальтовые астероиды класса V. До 2001 года считалось, что большинство базальтовых объектов в поясе астероидов являются фрагментами коры Весты (отсюда и название класс V), однако подробное изучение астероида (1459) Магния позволило выявить определённые различия в химическом составе открытых ранее базальтовых астероидов, что предполагает их отдельное происхождение.

Прослеживается довольно чёткая зависимость между составом астероида и его расстоянием от Солнца. Как правило, каменные астероиды, состоящие из безводных силикатов, расположены ближе к Солнцу, чем углеродные глинистые астероиды, в которых часто обнаруживают следы воды, в основном в связанном состоянии, но возможно, и в виде обычного водяного льда. Во внутренних областях пояса влияние солнечной радиации было более значительно, что привело к выдуванию лёгких элементов, в частности, воды, на периферию. В результате вода сконденсировалась на астероидах внешней части пояса, а во внутренних областях, где астероиды прогреваются достаточно хорошо, её практически не осталось.

Астероид Гаспра, и спутники Марса Фобос и Деймос

Космический аппарат Dawn и Церера

Белые пятна в кратерах Цереры

Астероиды как источники ресурсов

Постоянный рост потребления ресурсов промышленностью приводит к истощению их запасов на Земле, по некоторым оценкам, запасы таких ключевых для промышленности элементов, как сурьма, цинк, олово, серебро, свинец, индий, золото и медь, могут быть исчерпаны уже через 50-60 лет, и необходимость искать новые источники сырья станет особенно очевидной.

С точки зрения промышленного освоения астероиды являются одними из самых доступных тел в Солнечной системе. Ввиду малой гравитации посадка и взлёт с их поверхности требуют минимальных затрат топлива, а если использовать для разработки околоземные астероиды, то и стоимость доставки ресурсов с них на Землю будет низкой. Астероиды могут быть источниками таких ценных ресурсов, как, например, вода (в виде льда), из которой можно получить кислород для дыхания и водород для космического топлива, а также различные редкие металлы и минералы, такие как железо, никель, титан, кобальт и платина, и, в меньшем количестве, другие элементы вроде марганца, молибдена, родия и т. п. По сути, большинство элементов тяжелее железа, добываемых сейчас с поверхности нашей планеты, являются остатками астероидов, упавших на Землю в период поздней тяжёлой бомбардировки.

В 2004 году мировое производство железной руды превысило 1 млрд тонн. Для сравнения, один небольшой астероид класса M диаметром в 1 км может содержать до 2 млрд тонн железо-никелевой руды, что в 2-3 раза превышает добычу руды за 2004 год. Самый крупный известный металлический астероид (16) Психея содержит 1,710^19 кг железо-никелевой руды (что в 100 тысяч раз превышает запасы этой руды в земной коре). Этого количества хватило бы для обеспечения потребностей населения земного шара в течение нескольких миллионов лет, даже с учётом дальнейшего увеличения спроса. Небольшая часть извлечённого материала может также содержать драгоценные металлы.

Примером астероида, наиболее перспективного для освоения, является астероид (4660) Нерей. Этот астероид имеет очень низкую первую космическую скорость, даже по сравнению с Луной, что позволяет легко поднимать с его поверхности добытые материалы. Однако, чтобы доставить их на Землю, потребуется разогнать корабль до гораздо большей скорости.

Существует три возможных варианта добычи сырья:

Добыча руды и доставка её на место последующей переработки

Переработка добытой руды прямо на месте добычи, с последующей доставкой полученного материала

Перемещение астероида на безопасную орбиту между Луной и Землёй. Это теоретически может позволить сэкономить добытые на астероиде материалы.

Американцы уже начали юридическую суету.
25 ноября 2015 года Обама подписал U.S. Commercial Space Launch Competitiveness Act (H.R. 2262). Этот закон признает право граждан на владение космическими ресурсами. Согласно статье § 51303 закона:

Гражданин Соединенных Штатов, занимающийся добычей ресурсов астероида или других космических ресурсов, имеет право владеть, транспортировать, использовать и продавать эти ресурсы в соответствии с действующим законодательством и международными обязательствами США.

При этом в законе подчеркивается, что разрешено владеть именно добытыми ресурсами, а не самими космическими объектами (владение космическими объектами запрещает Договор о космосе).

Размеры Солнечной системы

Напоследок хочу привести цитату из книги Билла Брайсона «Краткая история почти всего на свете».

«…Наша Солнечная система, пожалуй, самое оживленное место на триллионы миль вокруг, однако все, что мы видим в ней - Солнце, планеты со спутниками, миллиард или около того кувыркающихся камней пояса астероидов, кометы и разные другие плавающие обломки, - занимает менее одной триллионной части имеющегося пространства. Вы также легко поймете, что ни на одной из встречавшихся вам карт Солнечной системы масштаб даже отдаленно не соответствует реальному. На большинстве школьных схем планеты изображены рядом, вплотную одна к другой - на многих иллюстрациях планеты-гиганты даже отбрасывают друг на друга тени, - но это неизбежный обман, дабы поместить их все на одном листе бумаги. В действительности Нептун расположен не чуть позади, а далеко позади Юпитера - в пять раз дальше, чем сам Юпитер от нас, так далеко, что получает лишь 3 % солнечного света, получаемого Юпитером.

Расстояния эти таковы, что на практике невозможно изобразить Солнечную систему с соблюдением масштаба.

Даже если сделать в учебнике большую раскладывающуюся вклейку или просто взять самый длинный лист бумаги, этого все равно будет недостаточно. Если на масштабной схеме Солнечной системы Землю изобразить размером с горошину, Юпитер будет находиться на расстоянии 300 м, а Плутон в 2,5 км (и будет размером с бактерию, так что в любом случае вы не сможете его разглядеть). В том же масштабе ближайшая звезда, Проксима Центавра, будет находиться в 16 000 км от нас. Если даже вы ужмёте все до такой степени, что Юпитер станет размером с точку в конце этого предложения, а Плутон не больше молекулы, то и в этом случае Плутон будет находиться на расстоянии больше десяти метров…

…А теперь еще одна вещь, которую следует учесть: пролетая мимо Плутона, мы лишь пролетаем мимо Плутона. Если заглянете в план полета, то увидите, что его цель - путешествие к краю Солнечной системы, но боюсь, что мы еще не добрались до него. Плутон может быть последним объектом, отмеченным на школьных схемах, но сама система здесь не кончается. На самом деле ее конца еще даже не видно. Мы не доберемся до края Солнечной системы, пока не пройдем сквозь облако Оорта, огромное царство кочующих комет… Плутон отмечает всего лишь одну 50-тысячную пути, а вовсе не край Солнечной системы, как бесцеремонно указывается на школьных схемах»

Солнечная система

Сериал «Прогулки в космосе». 8-я серия «Пояс астероидов»

Пояс астероидов – область Солнечной системы, расположенная между орбитами Марса и Юпитера, являющаяся местом скопления множества объектов всевозможных размеров, преимущественно неправильной формы, называемых астероидами или малыми планетами.

Между Марсом и Юпитером

Первые астероиды пояса были обнаружены астрономами еще в начале XIX века. Сегодня пояс астероидов известен астрономам как одно из крупнейших скоплений космических объектов, находящихся в Солнечной системе. Для многих ученых он представляет изрядный научный интерес.
Эту область также часто называют главным поясом астероидов или просто главным поясом, подчёркивая тем самым её отличие от других подобных областей скопления малых планет, таких как пояс Койпера за орбитой Нептуна, а также скопления объектов рассеянного диска и облака Оорта.

Общие сведения

Область пространства, располагающаяся от Солнца на расстоянии от 2,06 до 3,27 а. е., иногда называется ядром пояса астероидов и содержит до 93,4 % всех нумерованных астероидов.
На сегодняшний день пояс астероидов насчитывает свыше 300 000 именованных объектов. По состоянию на 6 сентября 2011 года количество именованных астероидов пояса достигло 285 075. Суммарная масса главного пояса равна примерно 4 % массы Луны, больше половины её сосредоточено в четырёх крупнейших объектах, которые названы в честь римских божеств: Церера (диаметр по экватору 950 км), Веста (диаметр – 529,2 км), Паллада (примерный диаметр – 532 км) и Гигея (диаметр 407,12 км). Церера – это самый большой объект пояса астероидов, ученые считают данное небесное тело карликовой планетой.
Астероиды движутся по орбитам вокруг Солнца в том же направлении, что и планеты, в зависимости от величины большой полуоси, их период обращения колеблется от 3,5 до 6 лет.
Температура на поверхности астероида зависит от расстояния до Солнца и величины его альбедо. Для частиц пыли на расстоянии 2,2 а. е. температурный диапазон начинается с 200 К (−73 °C) и ниже, а на расстоянии 3,2 а. е. уже со 165 К (−108 °C). Однако для астероидов это не совсем справедливо, поскольку из-за вращения температуры на его дневной и ночной сторонах могут существенно различаться.
Поверхность большинства астероидов диаметром более 100 м, вероятно, покрыта толстым слоем раздробленной породы и пыли, образовавшихся при падении метеоритов или собранных в процессе движения по орбите. Измерения периодов вращения астероидов вокруг своей оси показали, что существует верхний предел скоростей вращения для относительно крупных астероидов диаметром более 100 м, который составляет 2,2 часа.
На сегодняшний день известно, что почти каждый третий астероид входит в состав какого-либо семейства. Признаком принадлежности астероидов к одному семейству являются примерно одинаковые орбитальные параметры, такие как большая полуось, эксцентриситет и наклон орбиты, а также аналогичные спектральные особенности, последние указывают на общность происхождения астероидов семейства, образовавшихся в результате распада более крупного тела.
Меньшие ассоциации астероидов называются группами или кластерами.
Наряду с астероидами, в поясе существуют также шлейфы пыли, состоящие из микрочастиц радиусом в несколько сотен микрометров, которые образовались в результате столкновений между астероидами и их бомбардировки микрометеоритами. Эта пыль под действием солнечной радиации постепенно по спирали движется к Солнцу.
Сочетание астероидной пыли и пыли, выбрасываемой кометами, даёт явление зодиакального света. Это слабое свечение простирается в плоскости эклиптики в виде треугольника, и его можно увидеть в экваториальных районах вскоре после захода или незадолго перед восходом Солнца. Размеры частиц, которые его вызывают, в среднем колеблются в районе 40 мкм, а время их существования не превышает 700 тыс. лет. Наличие этих частиц свидетельствует о том, что процесс их образования происходит непрерывно.

В главном поясе, в зависимости от химического состава, выделено 3 основных спектральных класса астероидов: углеродные (класс C), силикатные (класс S) и металлические или железные (класс M). Все эти классы астероидов, особенно металлические, представляют интерес с точки зрения космической индустрии в целом и промышленного освоения астероидов в частности.

Хотя открытие и изучение пояса астероидов немыслимо без науки, история исследования этого астрономического чуда берет свое начало в древних мифах и легендах.

Загадочный Фаэтон

Гипотеза о существовании Фаэтона часто используется в научной фантастике (особенно советской). Как правило, предполагается, что на Фаэтоне существовали разумные существа, которые своими действиями вызвали разрушение планеты. Легенда об этой планете ярко описана в книге Александра Казанцева «Фаэты». В этой книге поведана история, как алчные жители планеты Фаэтон – фаэты, загубили свою землю, взорвав ее, после чего она распалась на бессчетное количество маленьких кусочков. Считается, что именно из этих кусочков и образовался сегодняшний пояс астероидов. Похожая версия происхождения этого скопления небесных тел прослеживается и в древних шумерских мифах и легендах.
Эта версия лежит также в основе романа Михаила Чернолусского «Фаэтон», повестей Олеся Бердника «Катастрофа» и "Стрела времени" и Константина Брендючкова «Последний ангел», Николая Руденко «Сын Солнца - Фаэтон», в мультфильме о путешествии землян к поясу астероидов «Фаэтон - сын солнца», рассказа Георгия Шаха «Гибель Фаэтона».
Мифы и легенды – это, конечно, хорошо. Но, что же говорит о происхождении пояса астероидов наука?

Происхождение пояса астероидов

В отличие от древних сказок, в научном сообществе принято считать, что пояс астероидов – это отнюдь не обломки взорвавшейся планеты, а скопление протопланетного вещества. Такая теория, скорее всего, верна, так как, последние данные показывают, что между Марсом и Юпитером планета попросту не могла образоваться. Причина этого – сильное гравитационное влияние Юпитера. Именно оно не дало протопланетному веществу (космической пыли, из которой создаются планеты) образоваться в полноценное небесное тело на таком далеком от Солнца расстоянии.
Исследования метеоритов, которые вышли из пояса астероидов и упали на Землю, показывают, что большинство из них относится к хондритам – метеоритам, в которых, в отличие от ахондритов, не происходила сепарация веществ, как обычно бывает в процессе формирования планет. Данные исследования лишний раз подтверждают вышеизложенную гипотезу, которая опираясь на реальные научные данные, выглядит гораздо убедительнее той версии, которую нам предлагают шумерские мифы.
Сегодня, ученым отлично известно, что пояс астероидов – отнюдь не сказочная, расколовшаяся планета, а остатки протопланетного вещества, которое появилось еще во времена зарождения Солнечной системы. Однако мифы и предания о легендарном Фаэтоне до сих пор живы и заставляют многих людей по всему миру проявлять интерес к такому астрономическому явлению, как пояс астероидов.

Открытие пояса астероидов

Своеобразной предысторией начала изучения пояса астероидов можно считать открытие зависимости, приблизительно описывающей расстояния планет от Солнца, получившей название правила Тициуса - Боде.
Впервые оно было сформулировано и опубликовано немецким физиком и математиком Иоганном Тициусом ещё в 1766 году, но несмотря на то, что ему, с указанными оговорками, удовлетворяли все шесть известных на то время планет (от Меркурия до Сатурна), правило долго не привлекало внимания. Так продолжалось до тех пор, пока в 1781 году не был открыт Уран, большая полуось орбиты которого точно соответствовала предсказанной данной формулой. После этого Иоганн Элерт Боде высказал предположение о возможности существования пятой от Солнца планеты между орбитами Марса и Юпитера, которая, согласно данному правилу, должна была находиться на расстоянии 2,8 а. е. и при этом до сих пор не была обнаружена. Открытие Цереры в январе 1801 года, причём именно на указанном расстоянии от Солнца, привело к усилению доверия к правилу Тициуса - Боде среди астрономов, которое сохранялось вплоть до открытия Нептуна, который выпадает из этого правила.

1 января 1801 года итальянский астроном Джузеппе Пиацци, наблюдая за звездным небом, открыл первый объект пояса астероидов – карликовую планету Цецера. Затем в 1802 году был открыт еще один крупный объект – астероид Паллада. Оба этих космических тела двигались примерно на одинаковой орбите от Солнца – 2,8 астрономических единицы. После открытия в 1804 году Юноны и в 1807 Весты – крупных небесных тел, двигавшихся по той же самой орбите, что и предыдущие, открытия новых объектов в этой области космоса прекратились до 1891 года. В 1891 году немецкий ученый Макс Вольф, используя метод астрофотографии, в одиночку обнаружил между Марсом и Юпитером 248 мелких астероидов. После чего, открытия новых объектов в этой области неба посыпались одно за другим.

Пояс астероидов вызывал интерес ученых не только в течение прошлых столетий, но и в последние годы. Первым серьезным достижением современных технологий в области изучения этого скопления небесных объектов был полет космического аппарата «Пионер-10», который был создан для изучения Юпитера и долетел до области главного пояса 16 июля 1972 года. Этот аппарат первым прошел сквозь пояс астероидов. С тех пор сквозь пояс пролетело еще 9 космических аппаратов. Ни один из них во время путешествия не пострадал от столкновения с астероидом.
Аппараты «Пионер-11», «Вояджер-1» и «Вояджер-2», а также зонд «Улисс» пролетали через пояс без запланированных или случайных сближений с астероидами. Аппарат «Галилео» стал первым космическим аппаратом, который сделал снимки астероидов. Первыми сфотографированными объектами стали астероид (951) Гаспра в 1991 году и астероид (243) Ида в 1993 году. После этого в НАСА была принята программа, согласно которой любой аппарат, пролетающий через пояс астероидов, должен, по возможности, пролететь мимо какого-либо астероида. В последующие годы космическими зондами и аппаратами были получены изображения ряда мелких объектов, таких как (253) Матильда в 1997 году с аппарата NEAR Shoemaker, (2685) Мазурский в 2000 году с «Кассини», (5535) Аннафранк в 2002 году со «Стардаст», (132524) APL в 2006 с зонда «Новые горизонты», (2867) Штейнс в 2008 году и (21) Лютеция в 2010 году с «Розетты».

Большинство изображений астероидов главного пояса, переданных космическими аппаратами, получены в результате краткого пролёта зондов вблизи астероидов на пути к основной цели миссии - для подробного изучения астероидов отправляли только два аппарата: NEAR Shoemaker, который исследовал (433) Эрос и Матильду, а также «Хаябуса», главной целью которого было изучение (25143) Итокава. Аппарат в течение длительного времени изучал поверхность астероида и даже, впервые в истории, доставил частицы грунта с его поверхности.

27 сентября 2007 года к крупнейшим астероидам Весте и Церере была отправлена автоматическая межпланетная станция Dawn. Аппарат достиг Весты 16 июля 2011 года и вышел на её орбиту. После изучения астероида в течение полугода он направился к Церере, которой достиг в 2015 году. Изначально предполагалось расширение его миссии для исследования Паллады.

Состав

Углеродистые астероиды класса C, названные так из-за большого процента простейших углеродных соединений в их составе, являются наиболее распространёнными объектами в главном поясе, на них приходится 75 % всех астероидов, особенно большая их концентрация характерна для внешних областей пояса. Эти астероиды имеют слегка красноватый оттенок и очень низкое альбедо (между 0,03 и 0,0938). Поскольку они отражают очень мало солнечного света, их трудно обнаружить. Вполне вероятно, что в поясе астероидов находится ещё немало относительно крупных астероидов, принадлежащих к этому классу, но до сих пор не найденных из-за малой яркости. Зато эти астероиды довольно сильно излучают в инфракрасном диапазоне из-за наличия в их составе воды. В целом их спектры соответствуют спектру вещества, из которого формировалась Солнечная система, за исключением летучих элементов. По составу они очень близки к углеродистым хондритным метеоритам, которые нередко находят на Земле. Крупнейшим представителем этого класса является астероид (10) Гигея.

Вторым по распространённости спектральным классом среди астероидов главного пояса является класс S, который объединяет силикатные астероиды внутренней части пояса, располагающиеся до расстояния 2,5 а. е. от Солнца. Спектральный анализ этих астероидов выявил наличие в их поверхности различных силикатов и некоторых металлов (железо и магний), но практически полное отсутствие каких-либо углеродных соединений. Это указывает на то, что породы за время существования этих астероидов претерпели значительные изменения, возможно, в связи с частичным плавлением и дифференциацией. Они имеют довольно высокое альбедо (между 0,10 и 0,2238) и составляют 17 % от всех астероидов. Астероид (3) Юнона является самым крупным представителем этого класса.

Металлические астероиды класса M, богатые никелем и железом, составляют 10 % от всех астероидов пояса и имеют умеренно большое альбедо (между 0,1 и 0,1838). Они расположены преимущественно в центральных областях пояса на расстоянии 2,7 а. е. от Солнца и могут быть фрагментами металлических ядер крупных планетезималей (небесное тело, образующееся в результате постепенного приращения более мелких тел, состоящих из частиц пыли протопланетного диска; непрерывно притягивая к себе новый материал и накапливая массу, планетезимали формируют более крупное тело), вроде Цереры, существовавших на заре формирования Солнечной системы и разрушенных при взаимных столкновениях. Однако в случае с металлическими астероидами не всё так просто. В ходе исследований обнаружено несколько тел, вроде астероида (22) Каллиопа, спектр которых близок спектру астероидов класса M, но при этом они имеют крайне низкую для металлических астероидов плотность. Химический состав подобных астероидов на сегодняшний день практически неизвестен, и вполне возможно, что по составу они близки к астероидам класса C или S.

Одной из загадок астероидного пояса являются относительно редкие базальтовые астероиды класса V. До 2001 года считалось, что большинство базальтовых объектов в поясе астероидов являются фрагментами коры Весты (отсюда и название класс V), однако подробное изучение астероида (1459) Магния позволило выявить определённые различия в химическом составе открытых ранее базальтовых астероидов, что предполагает их отдельное происхождение.

Прослеживается довольно чёткая зависимость между составом астероида и его расстоянием от Солнца. Как правило, каменные астероиды, состоящие из безводных силикатов, расположены ближе к Солнцу, чем углеродные глинистые астероиды, в которых часто обнаруживают следы воды, в основном в связанном состоянии, но возможно, и в виде обычного водяного льда. Во внутренних областях пояса влияние солнечной радиации было более значительно, что привело к выдуванию лёгких элементов, в частности, воды, на периферию. В результате вода сконденсировалась на астероидах внешней части пояса, а во внутренних областях, где астероиды прогреваются достаточно хорошо, её практически не осталось.

Астероиды как источники ресурсов

Постоянный рост потребления ресурсов промышленностью приводит к истощению их запасов на Земле, по некоторым оценкам, запасы таких ключевых для промышленности элементов, как сурьма, цинк, олово, серебро, свинец, индий, золото и медь, могут быть исчерпаны уже через 50-60 лет, и необходимость искать новые источники сырья станет особенно очевидной.

С точки зрения промышленного освоения астероиды являются одними из самых доступных тел в Солнечной системе. Ввиду малой гравитации посадка и взлёт с их поверхности требуют минимальных затрат топлива, а если использовать для разработки околоземные астероиды, то и стоимость доставки ресурсов с них на Землю будет низкой. Астероиды могут быть источниками таких ценных ресурсов, как, например, вода (в виде льда), из которой можно получить кислород для дыхания и водород для космического топлива, а также различные редкие металлы и минералы, такие как железо, никель, титан, кобальт и платина, и, в меньшем количестве, другие элементы вроде марганца, молибдена, родия и т. п. По сути, большинство элементов тяжелее железа, добываемых сейчас с поверхности нашей планеты, являются остатками астероидов, упавших на Землю в период поздней тяжёлой бомбардировки.

В 2004 году мировое производство железной руды превысило 1 млрд тонн. Для сравнения, один небольшой астероид класса M диаметром в 1 км может содержать до 2 млрд тонн железо-никелевой руды, что в 2-3 раза превышает добычу руды за 2004 год. Самый крупный известный металлический астероид (16) Психея содержит 1,7·10^19 кг железо-никелевой руды (что в 100 тысяч раз превышает запасы этой руды в земной коре). Этого количества хватило бы для обеспечения потребностей населения земного шара в течение нескольких миллионов лет, даже с учётом дальнейшего увеличения спроса. Небольшая часть извлечённого материала может также содержать драгоценные металлы.

Примером астероида, наиболее перспективного для освоения, является астероид (4660) Нерей. Этот астероид имеет очень низкую первую космическую скорость, даже по сравнению с Луной, что позволяет легко поднимать с его поверхности добытые материалы. Однако, чтобы доставить их на Землю, потребуется разогнать корабль до гораздо большей скорости.

Существует три возможных варианта добычи сырья:

Добыча руды и доставка её на место последующей переработки

Переработка добытой руды прямо на месте добычи, с последующей доставкой полученного материала

Перемещение астероида на безопасную орбиту между Луной и Землёй. Это теоретически может позволить сэкономить добытые на астероиде материалы.

Американцы уже начали юридическую суету.
25 ноября 2015 года Обама подписал U.S. Commercial Space Launch Competitiveness Act (H.R. 2262). Этот закон признает право граждан на владение космическими ресурсами. Согласно статье § 51303 закона:

Гражданин Соединенных Штатов, занимающийся добычей ресурсов астероида или других космических ресурсов, имеет право владеть, транспортировать, использовать и продавать эти ресурсы в соответствии с действующим законодательством и международными обязательствами США.

При этом в законе подчеркивается, что разрешено владеть именно добытыми ресурсами, а не самими космическими объектами (владение космическими объектами запрещает Договор о космосе).

Размеры Солнечной системы

Напоследок хочу привести цитату из книги Билла Брайсона "Краткая история почти всего на свете".

"...Наша Солнечная система, пожалуй, самое оживленное место на триллионы миль вокруг, однако все, что мы видим в ней - Солнце, планеты со спутниками, миллиард или около того кувыркающихся камней пояса астероидов, кометы и разные другие плавающие обломки, - занимает менее одной триллионной части имеющегося пространства. Вы также легко поймете, что ни на одной из встречавшихся вам карт Солнечной системы масштаб даже отдаленно не соответствует реальному. На большинстве школьных схем планеты изображены рядом, вплотную одна к другой - на многих иллюстрациях планеты-гиганты даже отбрасывают друг на друга тени, - но это неизбежный обман, дабы поместить их все на одном листе бумаги. В действительности Нептун расположен не чуть позади, а далеко позади Юпитера - в пять раз дальше, чем сам Юпитер от нас, так далеко, что получает лишь 3 % солнечного света, получаемого Юпитером.
Расстояния эти таковы, что на практике невозможно изобразить Солнечную систему с соблюдением масштаба.
Даже если сделать в учебнике большую раскладывающуюся вклейку или просто взять самый длинный лист бумаги, этого все равно будет недостаточно. Если на масштабной схеме Солнечной системы Землю изобразить размером с горошину, Юпитер будет находиться на расстоянии 300 м, а Плутон в 2,5 км (и будет размером с бактерию, так что в любом случае вы не сможете его разглядеть). В том же масштабе ближайшая звезда, Проксима Центавра, будет находиться в 16 000 км от нас. Если даже вы ужмёте все до такой степени, что Юпитер станет размером с точку в конце этого предложения, а Плутон не больше молекулы, то и в этом случае Плутон будет находиться на расстоянии больше десяти метров...
...А теперь еще одна вещь, которую следует учесть: пролетая мимо Плутона, мы лишь пролетаем мимо Плутона. Если заглянете в план полета, то увидите, что его цель - путешествие к краю Солнечной системы, но боюсь, что мы еще не добрались до него. Плутон может быть последним объектом, отмеченным на школьных схемах, но сама система здесь не кончается. На самом деле ее конца еще даже не видно. Мы не доберемся до края Солнечной системы, пока не пройдем сквозь облако Оорта, огромное царство кочующих комет... Плутон отмечает всего лишь одну 50-тысячную пути, а вовсе не край Солнечной системы, как бесцеремонно указывается на школьных схемах"

Размер и время гибели Фаэтона

Как было сказано выше, масса всех известных астероидов оценивается в 1/700-1/1000 массы Земли. В поясе астероидов между орбитами Марса и Юпитера может находиться еще несколько миллиардов неизвестных небесных тел размером от десятков (возможно, даже сотен) километров до пылинок. Не меньшее количество астероидов покинуло этот район. Таким образом, масса гипотетической планеты Фаэтон должна была быть много большей.
Подсчеты, проведенные Ф. Зигелем на основании гипотетической массы и плотности астероидного вещества, показали, что диаметр Фаэтона мог равняться 6880 км - чуть больше диаметра Марса. Близкие цифры приводятся и в работах ряда других российских и зарубежных исследователей. Имеются предположения, что Фаэтон был сопоставим по размеру с Луной, т. е. его диаметр составлял всего около 3500 км.
Относительно времени гибели Фаэтона не существует единой точки зрения. Приводятся даты 3,7-3,8 млрд. лет, 110 млн. лет, 65 млн. лет, 16 млн. лет, 25 тыс. лет и 12 тыс. лет назад . Каждая такая дата связана с катастрофическими событиями , случившимися в прошлые периоды геологической истории Земли. Как видим, разброс значений весьма существенный.
Из возможных дат гибели Фаэтона почти наверняка можно исключить 25 тыс. лет и 12 тыс. лет. Дело в том, что на снимках астероида Эрос, полученных исследовательским зондом "НИАР Шумейкер", хорошо виден слой реголита. Он почти повсеместно перекрывает коренные породы и достигает значительной мощности на дне кратеров.
Учитывая крайне медленную скорость накопления таких образований, возраст астероидов вряд ли может быть меньшим, чем несколько миллионов лет.
Также маловероятна гибель Фаэтона 3,7-3,8 млрд. лет назад. Слишком уж велика для этого доля углистых астероидов в астероидном поясе (75%), которые скорее всего являются фрагментами его коры. А, как известно из геологической истории Земли, а теперь и Марса , формирование столь мощной коры должно занимать не один миллиард лет.
Даты 110 млн. лет и 65 млн. лет привязаны к времени великих катастроф на Земле (последняя - ко времени гибели динозавров). Они обоснованы лишь тем, что якобы дают ответ на вопрос о происхождении астероидов (взорвавшаяся планета), столкнувшихся с Землей в те далекие времена.
Среди перечисленных значений наиболее вероятной датой гибели Фаэтона представляется 16 млн. лет. Эта цифра имеет под собой весьма серьезное научное обоснование. В статье "Марс до и после катастрофы" я говорил об обнаруженном в 2000 году в горах Антарктиды метеорите Ямато, поверхностные слои которого имеют возраст 16 млн. лет и несут следы сильнейшего динамического стресса и плавления. По сходству газового состава включений этого метеорита и современной атмосферы Марса его отнесли к одному из 20 известных марсианских метеоритов. На этом основании я предположил, что катастрофа на Марсе могла произойти 16 млн. лет назад. Хотя и оставался вопрос, каким образом метеорит был выброшен за пределы этой планеты.
Если допустить, что Фаэтон имел атмосферу, сходную с атмосферой Марса и других планет земной группы и состоящую из углекислого газа, азота, аргона и кислорода, то метеорит Ямато мог быть осколком взорвавшейся планеты Фаэтон, а не Марса. В этом случае намного проще объяснить, как эта каменная глыба покинула свою планету.
Самое интересное то, что если метеорит Ямато действительно является осколком Фаэтона, время предполагаемой катастрофы на Марсе (16 млн. лет назад) останется прежним. Ведь для того чтобы достигнуть Марса, летящему со скоростью более 10 км/сек. телу должно было потребоваться всего несколько лет.
Получается, что катастрофы на Фаэтоне и Марсе могли произойти практически в одно и то же время. Разрушение Фаэтона могло привести к интенсивной метеоритной бомбардировке ближайшей к нему планеты - Марса - и, как следствие, к полному прекращению жизни на его поверхности

Данная работа была написана более пяти лет назад. Тогда мне почти ничего не было известно о хронологии катастроф на Земле в палеогене и неогене. За прошедшие пять с лишним лет я установил на основе совместного анализа фольклорных и геологических данных, что главная катастрофа в истории Земле тоже произошла 16 млн. лет назад. Она привела к образованию нового мира и современного человечества. Читайте об этом в работе " Самая главная катастрофа в истории Земли, во время которой появилось человечество. Когда она произошла? "

Почему погиб Фаэтон?


Прежде чем ответить на этот вопрос, задумаемся: а существовала ли вообще эта планета? Судя по переводу текстов, сделанному Закария Ситчином с глиняных табличек 6-тысячелетней давности, о ней было известно еще в Древнем Шумере. Эта планета называлась Тиамат. Она раскололась на 2 части в результате какой-то страшной по силе космической катастрофы. Одна ее часть переместилась на другую орбиту и стала Землей (по другой, более поздней, версии - спутником Земли Луной). Вторая часть развалилась на куски и образовала пояс астероидов между Марсом и Юпитером.
Существование Фаэтона было общепризнанным с конца ХVIII века до 1944 года, когда появилась космогоническая теория (точнее - гипотеза) О.Ю. Шмидта об образовании планет из метеоритного облака, захваченного Солнцем, пролетавшим через него. Согласно теории Шмидта астероиды - это не обломки Фаэтона, а материал некой необразовавшейся планеты. Однако сегодня эта теория имеет скорее историческую, чем научную ценность, на что, по-видимому, обречена и большая часть других естественно-научных теорий, построенных на основе расчетов и предположений.
Приведенные в предыдущих разделах данные скорее свидетельствуют о том, что Фаэтон действительно существовал, чем об обратном. Тогда почему же он погиб?
На этот счет бытует большое количество гипотез, предложенных и учеными, и фантастами. Не вдаваясь в обсуждение каждой из них, выделим среди них три основные. Согласно первой причиной разрушения Фаэтона могло быть гравитационное воздействие Юпитера при опасном сближении с ним; взрыв планеты в результате ее внутренней активности (термоядерных реакций?); ее столкновение с другим небесным телом. Существуют и другие гипотезы: Фаэтон разорвала центробежная сила из-за слишком быстрого суточного вращения; он был разрушен в результате столкновения с собственным спутником или телом, состоящим из антивещества и др.

← Вернуться

×
Вступай в сообщество «lenew.ru»!
ВКонтакте:
Я уже подписан на сообщество «lenew.ru»