Виды математических моделей. Математическое моделирование. Форма и принципы представления математических моделей Математическое моделирование классификация моделей

Подписаться
Вступай в сообщество «lenew.ru»!
ВКонтакте:

Модель - это такой материальный или мысленно представляемый объект, который в процессе познания (изучения) замещает объект-оригинал, сохраняя некоторые важные для данного исследования типичные его черты.

Математическая модель - модель, в которой для описания свойств и типичных черт объекта используются математические символы.

Покупая в магазине разные продукты, мы автоматически занимаемся простейшим математическим моделированием. Запомнив цену каждого продукта, мы (или кассир) складываем абстрактные числа, оплачиваем сумму и затем по каждому чеку (числу на чеке) получаем конкретный продукт.

Такую же простейшую схему математического моделирования мы много раз применяли в курсе алгебры при решении текстовых задач. Мы перекладывали практическую задачу на математический язык, решали математическую задачу, а затем интерпретировали математический результат.

Процесс математического моделирования - это процесс построения математической модели. Он состоит из следующих этапов:

Переложение практической задачи на математический язык: составление уравнений, неравенств, системы уравнений и неравенств и т. д.

Решение математической задачи: уравнения, неравенства, системы и т. д.

Интерпретация математического результата: переход от найденных чисел (корней уравнений, решений неравенств) к их практическому смыслу в данной задаче.

Проверка результата практикой.

Первые три этапа мы все применяли при решении текстовых алгебраических задач. И если мы не допустили ошибок, что проверяется непосредственно проверкой или по данным в учебнике ответам, то считается, что задача решена верно. При решении практических задач такого ответа не существует. Представьте себе, что решается сложная задача о конструировании самолета или не менее сложная экономическая задача. В таких случаях необходима проверка математических выводов экспериментом.

Чтобы проверить теоретические выводы о конструкции самолета, строят его модель - единственный (а не серийный) настоящий самолет - и сначала проверяют его испытанием в аэродинамической трубе. Затем проводят испытания в настоящем полете. Во время испытания выявляются недостатки, уточняются условия задачи, уточняются и проверяются все три этапа ее решения. Затем снова эксперимент, и так до получения хорошего для практики результата.

Таким образом, вырисовывается следующая схема математического моделирования:

Рассмотрим пример.

Задача. Два художника купили по одинаковому количеству краски. Первый из них половину всей краски купил по рублей за тюбик, а другую половину - по рублей за тюбик. Второй половину всех денег за покупку истратил на тюбики по рублей, а другую половину денег - на тюбики по рублей. Кто из них заплатил за покупку меньше?

Решение. I. Введем обозначения:

S - число тюбиков, купленных каждым художником;

х рублей - сумма, затраченная на покупку первым художником;

y рублей - сумма, затраченная на покупку вторым художником.

По условию задачи имеем:

S/2 + S/2 = x, (1)

y/ 2 + y/ 2 =S, (2)

Итак, нужно выяснить, какое из чисел, x или y, меньше другого, если положительные числа, x, y, S удовлетворяют равенствам (1), (2). Эта математическая задача и есть математическая модель данной практической задачи.

Приведем некоторые задачи, решаемые методом моделирования

Задача о рекламе. Средства массовой информации дают рекламные объявления для ускорения сбыта некоторой продукции, которая есть в продаже. Последующая информация о продукции распространяется среди покупателей посредством общения друг с другом. По какому закону распространяется известие о наличии этой продукции?

Решение. Пусть N число потенциальных покупателей данной продукции и в момент времени t об ее наличии в продаже знают х (t) покупателей. Хотя на самом деле число покупателей целое, но для абстрактной математической модели можно считать, что функция х (t) может принимать все значения от 0 до N.

Статистика показывает, что с большой степенью достоверности скорость изменения функции х (t) прямо пропорциональна как числу знающих о продукции, так и числу не знающих. Если условится, что время отсчитывается после рекламных объявлений, когда о товаре узнало N / человек, то приходим к дифференциальному уравнению

x (t) = kx(t)(N x(t)) (3)

с начальными условиями х = N / при t = 0. В уравнении (3) коэффициент k это положительный коэффициент пропорциональности, который определяется экспериментально и зависит от интенсивности рекламы и скорости распространения слухов.

Интегрируя уравнение (1), находим, что

1 / N ln (x /(N x)) = kt + С.

Полагая NC = C1, приходим к равенству

x / (N x) = AеNk t , где А = еC1 .

Если последнее уравнение разрешить относительно х, то получим соотношение

х (t) = N Aе Nkt / AеNkt + 1 = N / 1 + Ре Nkt , (4)

где Р = 1/ A.

Если учесть теперь начальные условия, то уравнение (4) перепишется в виде

х (t) = N / (1 + (1)Nkt

Задача (химия и технология производства). Через сосуд ёмкостью а литров, наполненный водным раствором некоторой соли, непрерывно протекает жидкость, причем в единицу времени втекает b литров чистой воды и вытекает такое же количество раствора.

Найти закон, по которому изменяется содержание соли в сосуде в зависимости от времени протекания жидкости через сосуд.

Решение: в данный момент времени t в сосуде содержится некоторое число x кг соли, а в b литрах кг.

Если бы в течение единицы времени, начиная с момента t , концентрация раствора оставалась неизменной, т.е. такой, какой она была в момент времени t, то количество соли в сосуде за эту единицу времени уменьшилось бы на кг; такова скорость уменьшения количества соли в сосуде для момента t.

С другой стороны, производная равна скорости прироста количества соли в момент t; значит, скорость уменьшения количества соли в момент t будет равна. Итак, имеем:

Разделим переменные: , откуда, или потенцируя,

(5), где - произвольная постоянная.

Предположим для определенности, что при t=0 количество соли в сосуде было равно c кг.

Полагая в формуле (5) t=0, найдем, что и получим окончательно, т.е. количество соли убывает с течением времени по «показательному» закону.

Задача (биология, процессы прироста). В культуре пивных дрожжей быстрота прироста действующего фермента пропорциональна наличному его количеству x. Первоначальное количество фермента было a. Через час оно удвоилось. Во сколько раз оно увеличится через 3 часа?

По условию дифференциальное уравнение процесса,

где k - коэффициент пропорциональности.

Разделяя переменные, получим: .

Отсюда, общее решение.

Найдем с из начального условия: при t=0, x=a. Отсюда, или c = a.

Подставляя в общее решение, получим частное решение задачи: .

Коэффициент пропорциональности определяем из данных дополнительных условий: при t=1час; x=2a.

Отсюда: , или. Подставляя в частное решение, получим закон рассматриваемого процесса: .

При t = 3часа, x = 8a. Следовательно, количество фермента спустя три часа увеличится в 8 раз.

Ответ: за три часа количество фермента увеличится в 8 раз.

Для теории математического моделирования необходимо знать цель моделирования и представить в математическом виде объект моделирования. Слово «модель» происходит от латинского modus (копия, образ, очертание). Наиболее про­стым и наглядным примером моделирования являются гео­графические и топографические карты. Моделями являются структурные формулы в химии. Модель как средство позна­ния стоит между логическим мышлением и изучаемым про­цессом, явлением.

Моделирование - это замещение некоторого объекта А другим объектом В. Замещаемый объект называется ориги­налом, замещающий - моделью. Таким образом, модель - это заместитель оригинала. В зависимости от цели замеще­ния модель одного и того же оригинала может быть различ­ной. В науке и технике основной целью моделирования яв­ляется изучение оригинала при помощи более простой его модели. Замещение одного объекта другим имеет смысл только в случае их определенного сходства, аналогии.

Математическая модель является приближенным, выраженным в математических терминах, представлением объектов, концепций, систем или процессов. Объекты, кон­цепции, системы или процессы, подлежащие моделирова­нию, называют объектами моделирования (ОМ).

Все объекты и явления в большей или меньшей степени взаимосвязаны, но при моделировании пренебрегают боль­шинством взаимосвязей и объект моделирования рассматри­вают как отдельную систему. Если объект моделирования определен как отдельная система, то необходимо ввести принцип селективности, обеспечивающий выбор требуемых связей с внешней средой. Например, при моделировании электронных схем пренебрегают тепловым, акустическим, оптическим и механическим взаимодействием с внешней средой и рассматривают только электрические переменные. Принцип селективности вводит в систему ошибку, т. е. раз­ницу в поведении модели и объекта моделирования. Сле­дующим важным фактором моделирования является прин­цип причинности, связывающий в системе входные и вы­ходные переменные.

Для количественной оценки системы вводят понятие «состояния». Например, под состоянием электронной схемы понимают значения напряжений и токов в электронной схе­ме в данный момент времени.

При выводе математической модели аналитически чаще всего используются широко известные категории: законы, структуры и параметры.

Если какая-либо переменная величина у зависит от другой переменной х, то первая величина является функцией второй. Эта зависимость записывается в виде у = f(x) или у = у(х). В такой записи переменная х называется аргументом. Важной характеристикой функции является ее производная, процесс нахождения которой называется дифференцированием. Урав­нения, которые по математическим правилам связывают неиз­вестную функцию, ее производные и аргументы, называются дифференциальными. Процесс, обратный дифференцирова­нию, позволяющий по заданной производной найти саму фун­кцию, называется интегрированием.


Рассмотрим частный случай, когда функцией является путь, зависящий от аргумента - времени. Тогда производ­ная пути по времени - это скорость, а производная от ско­рости (или вторая производная от пути) - ускорение. Если йзвестна, например, скорость, то интегрированием находят путь, пройденный телом при движении за определенное вре­мя. Если известно только ускорение, то для нахождения пути операцию интегрирования производят дважды. При этом после вычисления первого интеграла становится изве­стной скорость.

Конечная цель создания математических моделей - установление функциональных зависимостей между пере­менными. Функциональная зависимость для каждой конк­ретной модели может принимать строго определенный вид. Когда моделируется устройство, на вход которого поступает сигнал х у а на выходе появляется сигнал у, то связь можно записать в виде таблицы. Для этого весь диапазон измене­ния входного и выходного сигналов разбивается на некото­рое число участков. Каждому участку диапазона изменения входного сигнала будет соответствовать определенный учас­ток диапазона изменения выходного сигнала. В сложных си­стемах, где имеется несколько входов и несколько выходов, аналитические зависимости выражаются системами диффе­ренциальных уравнений.

* Законы обычно формулируются для частных областей, Как, например, законы Кирхгофа, Ньютона. Применение этих законов к системе обычно фокусирует наше внимание на единственной области науки и техники. Используя зако­ны Кирхгофа и уравнения Максвелла для анализа электри­ческой системы, исследователь игнорирует другие (напри­мер, тепловые) процессы в системе.

Создание математической модели требует знания присут­ствующих в системе элементов и их взаимосвязей. Парамет­рами математической модели (ММ) являются входящие в системы уравнений различные коэффициенты. Эти ко­эффициенты вместе с уравнениями и граничными условия­ми образуют законченную ММ.

Любую математическую модель можно получить в результате: 1) прямого наблюдения явления, прямого его изучения и осмысливания (модели являются феноменоло­гическими); 2) некоторого процесса дедукции, когда новая модель получается как частный случай из некоторой более общей модели (такие модели называются асимптотически­ми); 3) некоторого процесса индукции, когда новая модель является естественным обобщением элементарных моделей (такие модели называются составными, или моделями ан­самблей).

Все системы существуют во времени и в пространстве. Математически это значит, что время и три пространствен­ные переменные могут рассматриваться в качестве незави­симых переменных.

Существует много признаков классификации математи­ческих моделей по признаку использования тех или иных переменных в качестве независимых, представленных в не­прерывной или дискретной форме; ММ классифицируют следующим образом:

1) модели с распределенными параметрами (все независи­мые переменные берутся в непрерывной форме);

2) модели с сосредоточенными параметрами (все независи­мые пространственные переменные дискретные, а вре­менная переменная непрерывна);

3) модели с дискретными параметрами (все независимые переменные берутся в дискретной форме).

На рис. 3.10, а...ж показана примерная классификация моделей. Все модели можно разделить на вещественные и идеальные (рис. 3.10, а). В данной главе рассматриваются только идеальные модели, которые объективны по своему содержанию (отражая реальную действительность), но субъ­ективны по форме и не могут существовать вне ее. Идеаль­ные модели существуют лишь в познании людей и функцио­нируют по законам логики. К логическим моделям относят­ся различные знаковые модели. Существенным моментом создания любой знаковой модели является процедура фор­мализации (формулы, алфавит, системы счислений).

В настоящее время в ряде областей науки и техники по­нятие модели трактуется не в духе классической физики, как наглядная, например, механическая система, а в духе современного этапа познания как абстрактная логико-мате­матическая структура.

В современном моделировании наряду с возрастанием в познании роли абстрактно-логических моделей существует другая тенденция, связанная с широким применением ки­бернетических функционально-информационных моделей.

Своеобразие кибернетического моделирования состоит в том, что объективное сходство модели и моделируемого объ­екта касается только их функций, областей применения, связи с внешней средой. Основа информационного подхода к изучению кибернетических процессов - абстрагирование.

Рассмотрим модели, которые имеют место в САПР БИС: структурные, функциональные, геометрические, знаковые, мысленные, аналитические, численные и имитационные.

Структурные модели воспроизводят состав элементов объекта или системы, их расположение в пространстве и взаимосвязи, т. е. структуру системы. Структурные модели могут быть и вещественными (макеты), и идеальными (на- | пример, машиностроительные чертежи, топология печатной | платы и топология ИС).

Функциональные модели имитируют только способ пове­дения оригинала, его функциональную зависимость от внешней среды. Наиболее характерным примером служат модели, построенные на концепции «черного ящика».

В этих моделях удается воспроизвести функционирование £ оригинала, полностью отвлекаясь от его содержимого и структуры, связывая с помощью математического соотношения различные входные и выходные величины.

Рис. 3.10. Общая классификация моделей (а), а также моделей натурных (б), физических (в), вещественных математических (г), наглядных (д), знаковых (е), идеальных математических (ж)

Геометрические модели отражают только структуру объ­екта и имеют большое значение в связи с проектированием электронных систем. Эти модели, построенные на основе геометрического подобия, позволяют решать задачи, связан­ные с оптимальным размещением объектов, прокладкой трасс на печатных платах и интегральных схемах.

Знаковые модели представляют собой упорядоченную за­пись символов (знаков). Знаки взаимодействуют между со­бой не по физическим законам, а по правилам, установлен­ным в той или иной области знаний, или, как принято гово­рить, согласно природе знаков. Знаковые модели имеют в настоящее время чрезвычайно широкое распространение. Практически каждая область знаний - лингвистика, про­граммирование, электроника и многие другие - выработала свою символику для описания моделей. Таковыми являются программы, схемы и т. п.

Мысленные модели являются продуктом чувственного восприятия и деятельности абстрактного мышления. К мысленным моделям можно отнести известную планетар­ную модель атома Бора. Для передачи этих моделей их пред­ставляют в виде словесного или знакового описания, т. е. мысленные модели могут фиксироваться в виде различных знаковых систем.

Аналитические модели позволяют получить явные зави­симости необходимых величин от параметров и перемен­ных, характеризующих изучаемое явление. Аналитическое решение математического соотношения является обобщен­ным описанием объекта

Численные модели характеризуются тем, что значения необходимых величин можно получить в результате приме­нения соответствующих численных методов. Все численные методы позволяют получить только частную информацию относительно искомых величин, поскольку для своей реали­зации требуют задания конкретных значений всех парамет­ров, входящих в математическое соотношение. Для каждой искомой величины приходится по-своему преобразовывать математическую модель и применять соответствующую чис­ленную процедуру.

Имитационные модели реализуются на ЭВМ в виде мо­делирующих алгоритмов (программ), позволяющих вычис­лять значения выходных переменных и определять новое состояние, в которое переходит модель при заданных значе­ниях входных переменных, параметров и исходного состоя­ния модели. Имитационное моделирование в отличие от численного характеризуется независимостью моделирую­щего алгоритма от типа информации, которую необходимо получить в результате моделирования. Достаточно универ­сальной, гибкой и эффективной является математическая модель, которая представляется в абстрактной математиче­ской форме посредством переменных, параметров, уравне­ний и неравенств.

В ММ входят следующие элементы: переменные (зависи­мые и независимые); константы или фиксированные пара­метры (определяющие степень связи переменных между со­бой); математические выражения (уравнения или/и нера­венства, объединяющие между собой переменные и параметры); логические выражения (определяющие различ­ные ограничения в математической модели); информация (алфавитно-цифровая и графическая).

Математические модели классифицируют по следующим критериям: 1) поведению моделей во времени; 2) видам входной информации, параметров и выражений, составляю­щих математическую модель; 3) структуре математической модели; 4) типу используемого математического аппарата.

Применительно к интегральным схемам можно предло­жить следующую классификацию.

В зависимости от характера свойств интегральной схемы математические модели делятся на функциональные и струк­турные.

Функциональные модели отображают процессы функци­онирования объекта, эти модели имеют форму систем урав­нений.

При решении ряда задач проектирования широкое при­менение находят математические модели, отображающие только структурные свойства проектируемого объекта; та­кие структурные модели могут иметь форму матриц, гра­фов, списков векторов и выражать взаимное расположение элементов в пространстве, наличие непосредственной связи в виде проводников и т. д. Структурные модели используют в том случае, когда задачи структурного синтеза удается формализовать и решать, абстрагируясь от особенности фи­зических процессов в объекте.

Рис. 3.11. Структурная модель инвертора = ит. д.)

По методу получения функциональные математические модели делятся на теоретические и формальные.

Теоретические модели получаются на основе изучения физических закономерностей, причем структура уравнений и параметры моделей имеют четкое физическое обоснование.

Формальные модели получаются при рассмотрении свойств реального объекта как черного ящика.

Теоретический подход позволяет получать более универ­сальные модели справедливые для различных режимов ра­боты и для широких диапазонов изменения внешних пара­метров.

Ряд признаков в классификации связан с особенностями уравнений, составляющих математическую модель; в зави­симости от линейности или нелинейности уравнений модели делят на линейные и нелинейные.

В зависимости от мощности множества значений пере­менных модели делят на непрерывные и дискретные (рис. 3.12).

В непрерывных моделях фигурирующая в них перемен­ная непрерывна или кусочно-непрерывна.

Переменные в дискретных моделях - дискретные вели­чины, множество которых счетно.

Рис. 3.12. Непрерывные и дискретные переменные

По форме связи между выходными, внутренними и внешними параметрами различают модели в виде систем уравнений и модели в виде явной зависимости выходных па­раметров от внутренних и внешних. Первые из них называ­ются алгоритмическими, а вторые - аналитическими.

В зависимости от того, учитывают ли уравнения модели инерционность процессов в объекте проектирования, разли­чают модели динамические и статические.

Непосредственно из структуры принятого определения вытекают ряд общих свойств моделей, которые обычно принимаются во внимание в практике моделирования.

  • 1. Модель представляет собой «четырехместную конструкцию», компонентами которой являются:
    • - субъект;
    • - задача, решаемая субъектом;
    • - объект-оригинал и язык описания или способ воспроизведения модели.

Особую роль в структуре обобщенной модели играет решаемая субъектом задача. Вне контекста задачи или класса задач понятие модели не имеет смысла.

  • 2. Каждому материальному объекту, вообще говоря, соответствует бесчисленное множество в равной мере адекватных, но различных по существу моделей, связанных с разными задачами.
  • 3. Паре задача-объект тоже соответствует множество моделей, содержащих в принципе одну и ту же информацию, но различающихся формами ее представления или воспроизведения.
  • 4. Модель по определению всегда является лишь относительным, приближенным подобием объекта-оригинала и в информационном отношении принципиально беднее последнего. Это ее фундаментальное свойство.
  • 5. Произвольная природа объекта-оригинала, фигурирующая в принятом определении, означает, что этот объект может быть материально-вещественным, может носить чисто информационный характер и, наконец, может представлять собой комплекс разнородных материальных и информационных компонентов. Однако независимо от природы объекта, характера решаемой задачи и способа реализации модель представляет собой информационное образование.
  • 6. Частным, но весьма важным для развитых в теоретическом отношении научных и технических дисциплин является случай, когда роль объекта-моделирования в исследовательской или прикладной задаче играет не фрагмент реального мира, рассматриваемый непосредственно, а некий идеальный конструкт, т. е., по сути дела другая модель, созданная ранее и практически достоверная. Подобное вторичное, а в общем случае n-кратное моделирование может осуществляться теоретическими методами с последующей проверкой получаемых результатов по экспериментальным данным, что характерно для фундаментальных естественных наук.

В менее развитых в теоретическом отношении областях знания (биология, некоторые технические дисциплины) вторичная модель обычно включает в себя эмпирическую информацию, которую не охватывают существующие теории.

Свойства любой модели таковы:

  • - конечность: модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;
  • - упрощенность: модель отображает только существенные стороны объекта;
  • - приблизительность: действительность отображается моделью грубо или приблизительно;
  • - адекватность: модель успешно описывает моделируемую систему;
  • - информативность: модель должна содержать достаточную информацию о системе - в рамках гипотез, принятых при построении модели.

Классификация математических моделей. При проектировании технических объектов используют множество видов математических моделей. В этой связи различают математические модели элементов и систем. При переходе к более высокому иерархическому уровню блочного структурирования система низшего уровня становится элементом системы нового уровня, и наоборот, при переходе к низшему уровню элемент становится системой. Следовательно, на низших уровнях используют наиболее сложные математические модели.

На высших уровнях могут быть с успехом применены более простые модели. Их можно получить путем аппроксимации моделей низших иерархических уровней.

В общем случае уравнения математической модели связывают физические величины, которые характеризуют состояние объекта и не относятся к перечисленным выше выходным, внутренним и внешним параметрам. Такими величинами являются: скорости и силы - в механических системах. Величины, характеризующие состояние технического объекта в процессе его функционирования, называют фазовыми переменными (фазовыми координатами).

Вектор фазовых переменных задает точку в пространстве, называемом фазовым пространством. К математическим моделям предъявляются требования адекватности, экономичности, универсальности. Эти требования противоречивы, поэтому обычно для проектирования каждого объекта используют свою оригинальную модель. Модель считается адекватной, если отражает исследуемые свойства с приемлемой точностью.

Точность оценивается степенью совпадения предсказанных в процессе вычислительного эксперимента на модели значений выходных параметров с истинными их значениями. При этом математическая модель должна быть как можно проще, но в то же время обеспечивать адекватное описание анализируемого процесса.

Классификация математических моделей, используемых при проектировании технических систем, приведена на рисунке.

Рисунок 1. - Классификация математических моделей:

По форме представления математических моделей различают инвариантную, алгоритмическую, аналитическую и графическую модели объекта проектирования.

В инвариантной форме математическая модель представляется системой уравнений (дифференциальных, алгебраических), вне связи с методом решения этих уравнений.

В алгоритмической форме соотношения модели связаны с выбранным численным методом решения и записаны в виде алгоритма последовательности вычислений.

Аналитическая модель представляет собой явные зависимости искомых переменных от заданных величин (обычно зависимости выходных параметров объекта от внутренних и внешних параметров).

Графическая (схемная) модель представляется в виде графов, эквивалентных схем, динамических моделей, диаграмм и т. п.

Среди алгоритмических, моделей выделяют имитационные модели, предназначенные для имитации физических и информационных процессов, протекающих и объекте при функционировании его под воздействием различных факторов внешней среды.

Структурные модели отображают только структуру объектов и используются при решении задач структурного синтеза. Параметрами структурных моделей называются морфологическими переменными.

Функциональные модели описывают процессы функционирования технических объектов и имеют форму систем уравнений. Они учитывают структурные и функциональные свойства и объекта и позволяют решать задачи как параметрического, так и структурного синтеза.

По способам получения функциональные математические модели делятся на теоретические и экспериментальные.

Теоретические модели получают на основе описания физических процессов функционирования объекта, а экспериментальные - на основе изучения поведения объекта во внешней среде, рассматривая его как кибернетический черный ящик. Эксперименты при о том могут быть физические (на техническом объекте или его физической модели) или вычислительные (на теоретической математической модели).

При построении теоретических моделей используют физический и формальный подходы.

Физический подход сводится к непосредственному применению физических законов для описания объектов, например, законов Ньютона, Гука, Кирхгофа, Фурье и др.

Формальный подход использует общие математические принципы и применяется при построении как теоретических, так и экспериментальных моделей.

Функциональные математические модели могут быть линейные и нелинейные.

Линейные модели содержат только линейные функции фазовых переменных и их производных. Математические модели таких объектов включают нелинейные функции фазовых переменных и (или) их производных и относятся к нелинейным.

Если при моделировании учитываются инерционные свойства технического объекта и (или) изменение во времени параметров объекта или внешней среды, то модель называют динамической. В противном случае модель статическая.

Большинство проектных процедур выполняется на детерминированных моделях. Детерминированная математическая модель характеризуется взаимно однозначным соответствием между внешним воздействием на динамическую систему и ее реакцией на это воздействие. В вычислительном эксперименте при проектировании обычно задают некоторые стандартные типовые воздействия на объект: ступенчатыми, импульсными, гармоническими, кусочно-линейными, экспоненциальными и др.

Их называют тестовыми воздействиями.

Как систему уравнений, или арифметических соотношений, или геометрических фигур, или комбинацию того и другого, исследование которых средствами математики должно ответить на поставленные вопросы о свойствах некоторой совокупности свойств объекта реального мира , как совокупность математических соотношений, уравнений, неравенств, описывающих основные закономерности, присущие изучаемому процессу, объекту или системе .

В автоматизированных системах управления математическая модель используется для определения алгоритма функционирования контроллера. Этот алгоритм определяет, как следует изменять управляющее воздействие в зависимости от изменения задающего для того, чтобы была достигнута цель управления.

Классификация моделей

Формальная классификация моделей

Формальная классификация моделей основывается на классификации используемых математических средств. Часто строится в форме дихотомий . Например, один из популярных наборов дихотомий :

и так далее. Каждая построенная модель является линейной или нелинейной, детерминированной или стохастической, … Естественно, что возможны и смешанные типы: в одном отношении сосредоточенные (по части параметров), в другом - распределённые модели и т. д.

Классификация по способу представления объекта

Наряду с формальной классификацией, модели различаются по способу представления объекта:

  • Структурные или функциональные модели

Модели-гипотезы в науке не могут быть доказаны раз и навсегда, можно лишь говорить об их опровержении или неопровержении в результате эксперимента .

Если модель первого типа построена, то это означает, что она временно признаётся за истину и можно сконцентрироваться на других проблемах. Однако это не может быть точкой в исследованиях, но только вре́менной паузой: статус модели первого типа может быть только вре́менным.

Феноменологическая модель

Второй тип - феноменологическая модель («ведем себя так, как если бы…» ), содержит механизм для описания явления, хотя этот механизм недостаточно убедителен, не может быть достаточно подтверждён имеющимися данными или плохо согласуется с имеющимися теориями и накопленным знанием об объекте. Поэтому феноменологические модели имеют статус вре́менных решений. Считается, что ответ всё ещё неизвестен, и необходимо продолжить поиск «истинных механизмов». Ко второму типу Пайерлс относит, например, модели теплорода и кварковую модель элементарных частиц.

Роль модели в исследовании может меняться со временем, может случиться так, что новые данные и теории подтвердят феноменологические модели и те будут повышены до статуса гипотезы. Аналогично новое знание может постепенно прийти в противоречие с моделями-гипотезами первого типа, и те могут быть переведены во второй. Так, кварковая модель постепенно переходит в разряд гипотез; атомизм в физике возник как временное решение, но с ходом истории перешёл в первый тип. А вот модели эфира проделали путь от типа 1 к типу 2, а сейчас находятся вне науки.

Идея упрощения очень популярна при построении моделей. Но упрощение бывает разным. Пайерлс выделяет три типа упрощений в моделировании.

Приближение

Третий тип моделей - приближения («что-то считаем очень большим или очень малым» ). Если можно построить уравнения, описывающие исследуемую систему, то это не значит, что их можно решить даже с помощью компьютера. Общепринятый приём в этом случае - использование приближений (моделей типа 3). Среди них модели линейного отклика . Уравнения заменяются линейными. Стандартный пример - закон Ома .

Мысленный эксперимент

m x ¨ = − k x {\displaystyle m{\ddot {x}}=-kx} ,

где x ¨ {\displaystyle {\ddot {x}}} означает вторую производную от x {\displaystyle x} по времени: x ¨ = d 2 x d t 2 {\displaystyle {\ddot {x}}={\frac {d^{2}x}{dt^{2}}}} .

Полученное уравнение описывает математическую модель рассмотренной физической системы. Эта модель называется «гармоническим осциллятором ».

По формальной классификации эта модель линейная, детерминистская, динамическая, сосредоточенная, непрерывная. В процессе её построения мы сделали множество допущений (об отсутствии внешних сил, отсутствии трения, малости отклонений и т. д.), которые в реальности могут не выполняться.

По отношению к реальности это, чаще всего, модель типа 4 упрощение («опустим для ясности некоторые детали»), поскольку опущены некоторые существенные универсальные особенности (например, диссипация). В некотором приближении (скажем, пока отклонение груза от равновесия невелико, при малом трении, в течение не слишком большого времени и при соблюдении некоторых других условий), такая модель достаточно хорошо описывает реальную механическую систему, поскольку отброшенные факторы оказывают пренебрежимо малое влияние на её поведение. Однако модель можно уточнить, приняв во внимание какие-то из этих факторов. Это приведёт к новой модели, с более широкой (хотя и снова ограниченной) областью применимости.

Впрочем, при уточнении модели сложность её математического исследования может существенно возрасти и сделать модель фактически бесполезной. Зачастую более простая модель позволяет лучше и глубже исследовать реальную систему, чем более сложная (и, формально, «более правильная»).

Если применять модель гармонического осциллятора к объектам, далёким от физики, её содержательный статус может быть другим. Например, при приложении этой модели к биологическим популяциям её следует отнести, скорее всего, к типу 6 аналогия («учтём только некоторые особенности»).

Жёсткие и мягкие модели

Гармонический осциллятор - пример так называемой «жёсткой» модели. Она получена в результате сильной идеализации реальной физической системы. Свойства гармонического осциллятора качественно изменяются малыми возмущениями. Например, если добавить в правую часть малое слагаемое − ε x ˙ {\displaystyle -\varepsilon {\dot {x}}} (трение) ( ε > 0 {\displaystyle \varepsilon >0} - некоторый малый параметр), то получим экспоненциально затухающие колебания, если изменить знак добавочного слагаемого (ε x ˙) {\displaystyle (\varepsilon {\dot {x}})} то трение превратится в накачку и амплитуда колебаний будет экспоненциально возрастать.

Для решения вопроса о применимости жёсткой модели необходимо понять, насколько существенными являются факторы, которыми мы пренебрегли. Нужно исследовать мягкие модели, получающиеся малым возмущением жёсткой. Для гармонического осциллятора они могут задаваться, например, следующим уравнением:

m x ¨ = − k x + ε f (x , x ˙) {\displaystyle m{\ddot {x}}=-kx+\varepsilon f(x,{\dot {x}})} .

Здесь f (x , x ˙) {\displaystyle f(x,{\dot {x}})} - некоторая функция, в которой может учитываться сила трения или зависимость коэффициента жёсткости пружины от степени её растяжения. Явный вид функции f {\displaystyle f} нас в данный момент не интересует.

Если мы докажем, что поведение мягкой модели принципиально не отличается от поведения жёсткой (вне зависимости от явного вида возмущающих факторов, если они достаточно малы), задача сведётся к исследованию жёсткой модели. В противном случае применение результатов, полученных при изучении жёсткой модели, потребует дополнительных исследований.

Если система сохраняет своё качественное поведение при малом возмущении, говорят, что она структурно устойчива. Гармонический осциллятор - пример структурно-неустойчивой (негрубой) системы. Тем не менее, эту модель можно применять для изучения процессов на ограниченных промежутках времени.

Универсальность моделей

Важнейшие математические модели обычно обладают важным свойством универсальности : принципиально разные реальные явления могут описываться одной и той же математической моделью. Скажем, гармонический осциллятор описывает не только поведение груза на пружине, но и другие колебательные процессы, зачастую имеющие совершенно иную природу: малые колебания маятника, колебания уровня жидкости в U {\displaystyle U} -образном сосуде или изменение силы тока в колебательном контуре. Таким образом, изучая одну математическую модель, мы изучаем сразу целый класс описываемых ею явлений. Именно этот изоморфизм законов, выражаемых математическими моделями в различных сегментах научного знания, подвиг Людвига фон Берталанфи на создание «общей теории систем ».

Прямая и обратная задачи математического моделирования

Существует множество задач, связанных с математическим моделированием. Во-первых, надо придумать основную схему моделируемого объекта, воспроизвести его в рамках идеализаций данной науки. Так, вагон поезда превращается в систему пластин и более сложных тел из разных материалов, каждый материал задаётся как его стандартная механическая идеализация (плотность, модули упругости, стандартные прочностные характеристики), после чего составляются уравнения, по дороге какие-то детали отбрасываются как несущественные, производятся расчёты, сравниваются с измерениями, модель уточняется, и так далее. Однако для разработки технологий математического моделирования полезно разобрать этот процесс на основные составные элементы.

Традиционно выделяют два основных класса задач, связанных с математическими моделями: прямые и обратные.

Прямая задача : структура модели и все её параметры считаются известными, главная задача - провести исследование модели для извлечения полезного знания об объекте. Какую статическую нагрузку выдержит мост? Как он будет реагировать на динамическую нагрузку (например, на марш роты солдат, или на прохождение поезда на различной скорости), как самолёт преодолеет звуковой барьер, не развалится ли он от флаттера , - вот типичные примеры прямой задачи. Постановка правильной прямой задачи (задание правильного вопроса) требует специального мастерства. Если не заданы правильные вопросы, то мост может обрушиться, даже если была построена хорошая модель для его поведения. Так, в 1879 г. в Великобритании обрушился металлический Железнодорожный мост через Ферт-оф-Тей , конструкторы которого построили модель моста, рассчитали его на 20-кратный запас прочности на действие полезной нагрузки, но забыли о постоянно дующих в тех местах ветрах. И через полтора года он рухнул.

В простейшем случае (одно уравнение осциллятора, например) прямая задача очень проста и сводится к явному решению этого уравнения.

Обратная задача : известно множество возможных моделей, надо выбрать конкретную модель на основании дополнительных данных об объекте. Чаще всего структура модели известна, и необходимо определить некоторые неизвестные параметры. Дополнительная информация может состоять в дополнительных эмпирических данных, или в требованиях к объекту (задача проектирования ). Дополнительные данные могут поступать независимо от процесса решения обратной задачи (пассивное наблюдение ) или быть результатом специально планируемого в ходе решения эксперимента (активное наблюдение ).

Одним из первых примеров виртуозного решения обратной задачи с максимально полным использованием доступных данных был построенный Ньютоном метод восстановления сил трения по наблюдаемым затухающим колебаниям.

В качестве другого примера можно привести математическую статистику . Задача этой науки - разработка методов регистрации, описания и анализа данных наблюдений и экспериментов с целью построения вероятностных моделей массовых случайных явлений . То есть множество возможных моделей ограничено вероятностными моделями. В конкретных задачах множество моделей ограничено сильнее.

Компьютерные системы моделирования

Для поддержки математического моделирования разработаны системы компьютерной математики, например, Maple , Mathematica , Mathcad , MATLAB , VisSim и др. Они позволяют создавать формальные и блочные модели как простых, так и сложных процессов и устройств и легко менять параметры моделей в ходе моделирования. Блочные модели представлены блоками (чаще всего графическими), набор и соединение которых задаются диаграммой модели.

Дополнительные примеры

Модель Мальтуса

Согласно модели, предложенной Мальтусом , скорость роста пропорциональна текущему размеру популяции , то есть описывается дифференциальным уравнением:

x ˙ = α x {\displaystyle {\dot {x}}=\alpha x} ,

где α {\displaystyle \alpha } - некоторый параметр, определяемый разностью между рождаемостью и смертностью. Решением этого уравнения является экспоненциальная функция x (t) = x 0 e α t {\displaystyle x(t)=x_{0}e^{\alpha t}} . Если рождаемость превосходит смертность ( α > 0 {\displaystyle \alpha >0} ), размер популяции неограниченно и очень быстро возрастает. В действительности этого не может происходить из-за ограниченности ресурсов. При достижении некоторого критического объёма популяции модель перестаёт быть адекватной, поскольку не учитывает ограниченность ресурсов. Уточнением модели Мальтуса может служить логистическая модель , которая описывается дифференциальным уравнением Ферхюльста :

x ˙ = α (1 − x x s) x {\displaystyle {\dot {x}}=\alpha \left(1-{\frac {x}{x_{s}}}\right)x} ,

где - «равновесный» размер популяции, при котором рождаемость в точности компенсируется смертностью. Размер популяции в такой модели стремится к равновесному значению x s {\displaystyle x_{s}} , причём такое поведение структурно устойчиво.

Система хищник-жертва

Допустим, что на некоторой территории обитают два вида животных : кролики (питающиеся растениями) и лисы (питающиеся кроликами). Пусть число кроликов x {\displaystyle x} , число лис y {\displaystyle y} . Используя модель Мальтуса с необходимыми поправками, учитывающими поедание кроликов лисами, приходим к следующей системе, носящей имя модели Лотки - Вольтерры :

{ x ˙ = (α − c y) x y ˙ = (− β + d x) y {\displaystyle {\begin{cases}{\dot {x}}=(\alpha -cy)x\\{\dot {y}}=(-\beta +dx)y\end{cases}}}

Поведение данной системы не является структурно устойчивым : малое изменение параметров модели (например, учитывающее ограниченность ресурсов, необходимых кроликам) может привести к качественному изменению поведения .

При некоторых значениях параметров эта система имеет равновесное состояние , когда число кроликов и лис постоянно. Отклонение от этого состояния приводит к постепенно затухающим колебаниям численности кроликов и лис.

Возможна и противоположная ситуация, когда любое малое отклонение от положения равновесия приведёт к катастрофическим последствиям, вплоть до полного вымирания одного из видов. На вопрос о том, какой из этих сценариев реализуется, модель Вольтерры - Лотки ответа не даёт: здесь требуются дополнительные исследования.

См. также

Примечания

  1. «A mathematical representation of reality»(Encyclopaedia Britanica)
  2. Новик И. Б. , О философских вопросах кибернетического моделирования. М., Знание, 1964.
  3. Советов Б. Я., Яковлев С. А. , Моделирование систем: Учеб. для вузов - 3-е изд., перераб. и доп. - М.: Высш. шк., 2001. - 343 с. ISBN 5-06-003860-2
  4. Самарский А. А. , Михайлов А. П. Математическое моделирование. Идеи. Методы. Примеры . - 2-е изд., испр. - М. : Физматлит, 2001. - ISBN 5-9221-0120-X .
  5. Мышкис А. Д. , Элементы теории математических моделей. - 3-е изд., испр. - М.: КомКнига, 2007. - 192 с ISBN 978-5-484-00953-4
  6. Севостьянов, А. Г. Моделирование технологических процессов: учебник / А. Г. Севостьянов, П. А. Севостьянов. - М.: Легкая и пищевая промышленность, 1984. - 344 с.
  7. Ротач В.Я. Теория автоматического управления. - 1-е. - М. : ЗАО "Издательский дом МЭИ", 2008. - С. 333. - 9 с. - ISBN 978-5-383-00326-8 .
  8. Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena (англ.) . Springer, Complexity series, Berlin-Heidelberg-New York, 2006. XII+562 pp. ISBN 3-540-35885-4 . Дата обращения 18 июня 2013. Архивировано 18 июня 2013 года.
  9. «Теория считается линейной или нелинейной в зависимости от того, какой - линейный или нелинейный - математический аппарат, какие - линейные или нелинейные - математические модели она использует. … ез отрицание последней. Современный физик, доведись ему заново создавать определение столь важной сущности, как нелинейность, скорее всего, поступил бы иначе, и, отдав предпочтение нелинейности как более важной и распространенной из двух противоположностей, определил бы линейность как „не нелинейность“.» Данилов Ю. А. , Лекции по нелинейной динамике. Элементарное введение. Серия «Синергетика: от прошлого к будущему». Изд.2. - M.: URSS, 2006. - 208 с. ISBN 5-484-00183-8
  10. «Динамические системы, моделируемые конечным числом обыкновенных дифференциальных уравнений, называют сосредоточенными или точечными системами. Они описываются с помощью конечномерного фазового пространства и характеризуются конечным числом степеней свободы. Одна и та же система в различных условиях может рассматриваться либо как сосредоточенная, либо как распределенная. Математические модели распределенных систем - это дифференциальные уравнения в частных производных, интегральные уравнения или обыкновенные уравнения с запаздывающим аргументом. Число степеней свободы распределенной системы бесконечно, и требуется бесконечное число данных для определения её состояния.»
    Анищенко В. С. , Динамические системы, Соросовский образовательный журнал, 1997, № 11, с. 77-84.
  11. «В зависимости от характера изучаемых процессов в системе S все виды моделирования могут быть разделены на детерминированные и стохастические, статические и динамические, дискретные, непрерывные и дискретно-непрерывные. Детерминированное моделирование отображает детерминированные процессы, то есть процессы, в которых предполагается отсутствие всяких случайных воздействий; стохастическое моделирование отображает вероятностные процессы и события. … Статическое моделирование служит для описания поведения объекта в какой-либо момент времени, а динамическое моделирование отражает поведение объекта во времени. Дискретное моделирование служит для описания процессов, которые предполагаются дискретными, соответственно непрерывное моделирование позволяет отразить непрерывные процессы в системах, а дискретно-непрерывное моделирование используется для случаев, когда хотят выделить наличие как дискретных, так и непрерывных процессов.»
    Советов Б. Я., Яковлев С. А. , Моделирование систем: Учеб. для вузов - 3-е изд., перераб. и доп. - М.: Высш. шк., 2001. - 343 с. ISBN 5-06-003860-2
  12. Обычно в математической модели отражается структура (устройство) моделируемого объекта, существенные для целей исследования свойства и взаимосвязи компонентов этого объекта; такая модель называется структурной. Если же модель отражает только то, как объект функционирует - например, как он реагирует на внешние воздействия,- то она называется функциональной или, образно, чёрным ящиком. Возможны и модели комбинированного типа. Мышкис А. Д. , Элементы теории математических моделей. - 3-е изд., испр. - М.: КомКнига, 2007. - 192 с

По учебнику Советова и Яковлева : «модель (лат. modulus - мера) - это объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала». (с. 6) «Замещение одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала с помощью объекта-модели называется моделированием». (с. 6) «Под математическим моделированием будем понимать процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристики рассматриваемого реального объекта. Вид математической модели зависит как от природы реального объекта, так и задач исследования объекта и требуемой достоверности и точности решения этой задачи».

Наконец, наиболее лаконичное определение математической модели: «Уравнение , выражающее идею ».

Классификация моделей

Формальная классификация моделей

Формальная классификация моделей основывается на классификации используемых математических средств. Часто строится в форме дихотомий . Например, один из популярных наборов дихотомий :

и так далее. Каждая построенная модель является линейной или нелинейной, детерминированной или стохастической, … Естественно, что возможны и смешанные типы: в одном отношении сосредоточенные (по части параметров), в другом - распределённые модели и т. д.

Классификация по способу представления объекта

Наряду с формальной классификацией, модели различаются по способу представления объекта:

  • Структурные или функциональные модели

Структурные модели представляют объект как систему со своим устройством и механизмом функционирования. Функциональные модели не используют таких представлений и отражают только внешне воспринимаемое поведение (функционирование) объекта. В их предельном выражении они называются также моделями «чёрного ящика» . Возможны также комбинированные типы моделей, которые иногда называют моделями «серого ящика ».

Содержательные и формальные модели

Практически все авторы, описывающие процесс математического моделирования, указывают, что сначала строится особая идеальная конструкция, содержательная модель . Устоявшейся терминологии здесь нет, и другие авторы называют этот идеальный объект концептуальная модель , умозрительная модель или предмодель . При этом финальная математическая конструкция называется формальной моделью или просто математической моделью, полученной в результате формализации данной содержательной модели (предмодели). Построение содержательной модели может производиться с помощью набора готовых идеализаций, как в механике, где идеальные пружины, твёрдые тела, идеальные маятники, упругие среды и т. п. дают готовые структурные элементы для содержательного моделирования. Однако в областях знания, где не существует полностью завершенных формализованных теорий (передний край физики , биологии , экономики , социологии , психологии , и большинства других областей), создание содержательных моделей резко усложняется.

Содержательная классификация моделей

Никакая гипотеза в науке не бывает доказана раз и навсегда. Очень чётко это сформулировал Ричард Фейнман :

«У нас всегда есть возможность опровергнуть теорию, но, обратите внимание, мы никогда не можем доказать, что она правильна. Предположим, что вы выдвинули удачную гипотезу, рассчитали, к чему это ведет, и выяснили, что все ее следствия подтверждаются экспериментально. Значит ли это, что ваша теория правильна? Нет, просто-напросто это значит, что вам не удалось ее опровергнуть».

Если модель первого типа построена, то это означает, что она временно признаётся за истину и можно сконцентрироваться на других проблемах. Однако это не может быть точкой в исследованиях, но только вре́менной паузой: статус модели первого типа может быть только вре́менным.

Тип 2: Феноменологическая модель (ведем себя так, как если бы …)

Феноменологическая модель содержит механизм для описания явления. Однако этот механизм недостаточно убедителен, не может быть достаточно подтверждён имеющимися данными или плохо согласуется с имеющимися теориями и накопленным знанием об объекте. Поэтому феноменологические модели имеют статус вре́менных решений. Считается, что ответ всё ещё неизвестен и необходимо продолжить поиск «истинных механизмов». Ко второму типу Пайерлс относит, например, модели теплорода и кварковую модель элементарных частиц.

Роль модели в исследовании может меняться со временем, может случиться так, что новые данные и теории подтвердят феноменологические модели и те будут повышены до статуса гипотезы. Аналогично, новое знание может постепенно прийти в противоречие с моделями-гипотезами первого типа и те могут быть переведены во второй. Так, кварковая модель постепенно переходит в разряд гипотез; атомизм в физике возник как временное решение, но с ходом истории перешёл в первый тип. А вот модели эфира , проделали путь от типа 1 к типу 2, а сейчас находятся вне науки.

Идея упрощения очень популярна при построении моделей. Но упрощение бывает разным. Пайерлс выделяет три типа упрощений в моделировании.

Тип 3: Приближение (что-то считаем очень большим или очень малым )

Если можно построить уравнения, описывающие исследуемую систему, то это не значит, что их можно решить даже с помощью компьютера. Общепринятый прием в этом случае - использование приближений (моделей типа 3). Среди них модели линейного отклика . Уравнения заменяются линейными. Стандартный пример - закон Ома .

А вот и тип 8, широко распространенный в математических моделях биологических систем.

Тип 8: Демонстрация возможности (главное - показать внутреннюю непротиворечивость возможности )

Это тоже мысленные эксперименты с воображаемыми сущностями, демонстрирующие, что предполагаемое явление согласуется с базовыми принципам и внутренне непротиворечиво. В этом основное отличие от моделей типа 7, которые вскрывают скрытые противоречия.

Один из самых знаменитых таких экспериментов - геометрия Лобачевского (Лобачевский называл её «воображаемой геометрией»). Другой пример - массовое производство формально - кинетических моделей химических и биологических колебаний, автоволн и др. Парадокс Эйнштейна - Подольского - Розена был задуман как модель 7 типа, для демонстрации противоречивости квантовой механики. Совершенно незапланированным образом он со временем превратился в модель 8 типа - демонстрацию возможности квантовой телепортации информации.

Пример

Рассмотрим механическую систему, состоящую из пружины, закрепленной с одного конца, и груза массой , прикрепленного к свободному концу пружины. Будем считать, что груз может двигаться только в направлении оси пружины (например, движение происходит вдоль стержня). Построим математическую модель этой системы. Будем описывать состояние системы расстоянием от центра груза до его положения равновесия. Опишем взаимодействие пружины и груза с помощью закона Гука () после чего воспользуемся вторым законом Ньютона , чтобы выразить его в форме дифференциального уравнения :

где означает вторую производную от по времени: .

Полученное уравнение описывает математическую модель рассмотренной физической системы. Эта модель называется «гармоническим осциллятором ».

По формальной классификации эта модель линейная, детерминисткая, динамическая, сосредоточенная, непрерывная. В процессе её построения мы сделали множество допущений (об отсутствии внешних сил, отсутствии трения, малости отклонений и т. д.), которые в реальности могут не выполняться.

По отношению к реальности это, чаще всего, модель типа 4 упрощение («опустим для ясности некоторые детали»), поскольку опущены некоторые существенные универсальные особенности (например, диссипация). В некотором приближении (скажем, пока отклонение груза от равновесия невелико, при малом трении, в течение не слишком большого времени и при соблюдении некоторых других условий), такая модель достаточно хорошо описывает реальную механическую систему, поскольку отброшенные факторы оказывают пренебрежимо малое влияние на её поведение. Однако модель можно уточнить, приняв во внимание какие-то из этих факторов. Это приведет к новой модели, с более широкой (хотя и снова ограниченной) областью применимости.

Впрочем, при уточнении модели сложность её математического исследования может существенно возрасти и сделать модель фактически бесполезной. Зачастую более простая модель позволяет лучше и глубже исследовать реальную систему, чем более сложная (и, формально, «более правильная»).

Если применять модель гармонического осциллятора к объектам, далёким от физики, её содержательный статус может быть другим. Например, при приложении этой модели к биологическим популяциям, её следует отнести, скорее всего, к типу 6 аналогия («учтём только некоторые особенности»).

Жёсткие и мягкие модели

Гармонический осциллятор - пример так называемой «жёсткой» модели. Она получена в результате сильной идеализации реальной физической системы. Для решения вопроса о её применимости необходимо понять, насколько существенными являются факторы, которыми мы пренебрегли. Иными словами, нужно исследовать «мягкую» модель, получающуюся малым возмущением «жёсткой». Она может задаваться, например, следующим уравнением:

Здесь - некоторая функция, в которой может учитываться сила трения или зависимость коэффициента жёсткости пружины от степени её растяжения, - некоторый малый параметр. Явный вид функции нас в данный момент не интересует. Если мы докажем, что поведение мягкой модели принципиально не отличается от поведения жёсткой (вне зависимости от явного вида возмущающих факторов, если они достаточно малы), задача сведется к исследованию жёсткой модели. В противном случае применение результатов, полученных при изучении жёсткой модели, потребует дополнительных исследований. Например, решением уравнения гармонического осциллятора являются функции вида , то есть колебания с постоянной амплитудой. Следует ли из этого, что реальный осциллятор будет бесконечно долго колебаться с постоянной амплитудой? Нет, поскольку рассматривая систему со сколь угодно малым трением (всегда присутствующим в реальной системе), мы получим затухающие колебания . Поведение системы качественно изменилось.

Если система сохраняет свое качественное поведение при малом возмущении, говорят, что она структурно устойчива. Гармонический осциллятор - пример структурно-неустойчивой (негрубой) системы. Тем не менее, эту модель можно применять для изучения процессов на ограниченных промежутках времени.

Универсальность моделей

Важнейшие математические модели обычно обладают важным свойством универсальности : принципиально разные реальные явления могут описываться одной и той же математической моделью. Скажем, гармонический осциллятор описывает не только поведение груза на пружине, но и другие колебательные процессы, зачастую имеющие совершенно иную природу: малые колебания маятника, колебания уровня жидкости в -образном сосуде или изменение силы тока в колебательном контуре. Таким образом, изучая одну математическую модель, мы изучаем сразу целый класс описываемых ею явлений. Именно этот изоморфизм законов, выражаемых математическими моделями в различных сегментах научного знания, подвиг Людвига фон Берталанфи на создание «Общей теории систем ».

Прямая и обратная задачи математического моделирования

Существует множество задач, связанных с математическим моделированием. Во-первых, надо придумать основную схему моделируемого объекта, воспроизвести его в рамках идеализаций данной науки. Так, вагон поезда превращается в систему пластин и более сложных тел из разных материалов, каждый материал задается как его стандартная механическая идеализация (плотность, модули упругости, стандартные прочностные характеристики), после чего составляются уравнения, по дороге какие-то детали отбрасываются, как несущественные, производятся расчёты, сравниваются с измерениями, модель уточняется, и так далее. Однако для разработки технологий математического моделирования полезно разобрать этот процесс на основные составные элементы.

Традиционно выделяют два основных класса задач, связанных с математическими моделями: прямые и обратные.

Прямая задача : структура модели и все её параметры считаются известными, главная задача - провести исследование модели для извлечения полезного знания об объекте. Какую статическую нагрузку выдержит мост? Как он будет реагировать на динамическую нагрузку (например, на марш роты солдат, или на прохождение поезда на различной скорости), как самолёт преодолеет звуковой барьер, не развалится ли он от флаттера , - вот типичные примеры прямой задачи. Постановка правильной прямой задачи (задание правильного вопроса) требует специального мастерства. Если не заданы правильные вопросы, то мост может обрушиться, даже если была построена хорошая модель для его поведения. Так, в 1879 г. в Великобритании обрушился металлический мост через реку Тей , конструкторы которого построили модель моста, рассчитали его на 20-кратный запас прочности на действие полезной нагрузки, но забыли о постоянно дующих в тех местах ветрах. И через полтора года он рухнул.

В простейшем случае (одно уравнение осциллятора, например) прямая задача очень проста и сводится к явному решению этого уравнения.

Обратная задача : известно множество возможных моделей, надо выбрать конкретную модель на основании дополнительных данных об объекте. Чаще всего, структура модели известна, и необходимо определить некоторые неизвестные параметры. Дополнительная информация может состоять в дополнительных эмпирических данных, или в требованиях к объекту (задача проектирования ). Дополнительные данные могут поступать независимо от процесса решения обратной задачи (пассивное наблюдение ) или быть результатом специально планируемого в ходе решения эксперимента (активное наблюдение ).

Одним из первых примеров виртуозного решения обратной задачи с максимально полным использованием доступных данных был построенный И. Ньютоном метод восстановления сил трения по наблюдаемым затухающим колебаниям.

В качестве другого примера можно привести математическую статистику . Задача этой науки - разработка методов регистрации, описания и анализа данных наблюдений и экспериментов с целью построения вероятностных моделей массовых случайных явлений . Т.е. множество возможных моделей ограничено вероятностными моделями. В конкретных задачах множество моделей ограничено сильнее.

Компьютерные системы моделирования

Для поддержки математического моделирования разработаны системы компьютерной математики, например, Maple , Mathematica , Mathcad , MATLAB , VisSim и др. Они позволяют создавать формальные и блочные модели как простых, так и сложных процессов и устройств и легко менять параметры моделей в ходе моделирования. Блочные модели представлены блоками (чаще всего графическими), набор и соединение которых задаются диаграммой модели.

Дополнительные примеры

Модель Мальтуса

Скорость роста пропорциональна текущему размеру популяции . Она описывается дифференциальным уравнением

где - некоторый параметр, определяемый разностью между рождаемостью и смертностью. Решением этого уравнения является экспоненциальная функция . Если рождаемость превосходит смертность (), размер популяции неограниченно и очень быстро возрастает. Понятно, что в действительности этого не может происходить из-за ограниченности ресурсов. При достижении некоторого критического объёма популяции модель перестает быть адекватной, поскольку не учитывает ограниченность ресурсов. Уточнением модели Мальтуса может служить логистическая модель , которая описывается дифференциальным уравнением Ферхюльста

где - «равновесный» размер популяции, при котором рождаемость в точности компенсируется смертностью. Размер популяции в такой модели стремится к равновесному значению , причем такое поведение структурно устойчиво.

Система хищник-жертва

Допустим, что на некоторой территории обитают два вида животных : кролики (питающиеся растениями) и лисы (питающиеся кроликами). Пусть число кроликов , число лис . Используя модель Мальтуса с необходимыми поправками, учитывающими поедание кроликов лисами, приходим к следующей системе, носящей имя модели Лотки - Вольтерра :

Эта система имеет равновесное состояние , когда число кроликов и лис постоянно. Отклонение от этого состояния приводит к колебаниям численности кроликов и лис, аналогичным колебаниям гармонического осциллятора . Как и в случае гармонического осциллятора, это поведение не является структурно устойчивым : малое изменение модели (например, учитывающее ограниченность ресурсов, необходимых кроликам) может привести к качественному изменению поведения . Например, равновесное состояние может стать устойчивым, и колебания численности будут затухать . Возможна и противоположная ситуация, когда любое малое отклонение от положения равновесия приведет к катастрофическим последствиям, вплоть до полного вымирания одного из видов. На вопрос о том, какой из этих сценариев реализуется, модель Вольтерра - Лотки ответа не дает: здесь требуются дополнительные исследования.

Примечания

  1. «A mathematical representation of reality»(Encyclopaedia Britanica)
  2. Новик И. Б. , О философских вопросах кибернетического моделирования. М., Знание, 1964.
  3. Советов Б. Я., Яковлев С. А. , Моделирование систем: Учеб. для вузов - 3-е изд., перераб. и доп. - М.: Высш. шк., 2001. - 343 с. ISBN 5-06-003860-2
  4. Самарский А. А. , Михайлов А. П. Математическое моделирование. Идеи. Методы. Примеры . - 2-е изд., испр. - М .: Физматлит, 2001. - ISBN 5-9221-0120-X
  5. Мышкис А. Д. , Элементы теории математических моделей. - 3-е изд., испр. - М.: КомКнига, 2007. - 192 с ISBN 978-5-484-00953-4
  6. Севостьянов, А.Г. Моделирование технологических процессов: учебник / А.Г. Севостьянов, П.А. Севостьянов. – М.: Легкая и пищевая промышленность, 1984. - 344 с.
  7. Wiktionary: mathematical model
  8. CliffsNotes.com. Earth Science Glossary. 20 Sep 2010
  9. Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena, Springer, Complexity series, Berlin-Heidelberg-New York, 2006. XII+562 pp. ISBN 3-540-35885-4
  10. «Теория считается линейной или нелинейной в зависимости от того, какой - линейный или нелинейный - математический аппарат, какие - линейные или нелинейные - математические модели она использует. … ез отрицание последней. Современный физик, доведись ему заново создавать определение столь важной сущности, как нелинейность, скорее всего, поступил бы иначе, и, отдав предпочтение нелинейности как более важной и распространенной из двух противоположностей, определил бы линейность как „не нелинейность“.» Данилов Ю. А. , Лекции по нелинейной динамике. Элементарное введение. Серия «Синергетика: от прошлого к будущему». Изд.2. - M.: URSS, 2006. - 208 с. ISBN 5-484-00183-8
  11. «Динамические системы, моделируемые конечным числом обыкновенных дифференциальных уравнений, называют сосредоточенными или точечными системами. Они описываются с помощью конечномерного фазового пространства и характеризуются конечным числом степеней свободы. Одна и та же система в различных условиях может рассматриваться либо как сосредоточенная, либо как распределенная. Математические модели распределенных систем - это дифференциальные уравнения в частных производных, интегральные уравнения или обыкновенные уравнения с запаздывающим аргументом. Число степеней свободы распределенной системы бесконечно, и требуется бесконечное число данных для определения ее состояния.» Анищенко В. С. , Динамические системы, Соросовский образовательный журнал, 1997, № 11, с. 77-84.
  12. «В зависимости от характера изучаемых процессов в системе S все виды моделирования могут быть разделены на детерминированные и стохастические, статические и динамические, дискретные, непрерывные и дискретно-непрерывные. Детерминированное моделирование отображает детерминированные процессы, то есть процессы, в которых предполагается отсутствие всяких случайных воздействий; стохастическое моделирование отображает вероятностные процессы и события. … Статическое моделирование служит для описания поведения объекта в какой-либо момент времени, а динамическое моделирование отражает поведение объекта во времени. Дискретное моделирование служит для описания процессов, которые предполагаются дискретными, соответственно непрерывное моделирование позволяет отразить непрерывные процессы в системах, а дискретно-непрерывное моделирование используется для случаев, когда хотят выделить наличие как дискретных, так и непрерывных процессов.» Советов Б. Я., Яковлев С. А. ISBN 5-06-003860-2
  13. Обычно в математической модели отражается структура (устройство) моделируемого объекта, существенные для целей исследования свойства и взаимосвязи компонентов этого объекта; такая модель называется структурной. Если же модель отражает только то, как объект функционирует - например, как он реагирует на внешние воздействия,- то она называется функциональной или, образно, черным ящиком. Возможны и модели комбинированного типа. Мышкис А. Д. ISBN 978-5-484-00953-4
  14. «Очевидный, но важнейший начальный этап построения или выбора математической модели - это получение по возможности более четкого представления о моделируемом объекте и уточнение его содержательной модели, основанное на неформальных обсуждениях. Нельзя жалеть времени и усилий на этот этап, от него в значительной мере зависит успех всего исследования. Не раз бывало, что значительный труд, затраченный на решение математической задачи, оказывался малоэффективным или даже потраченным впустую из-за недостаточного внимания к этой стороне дела.» Мышкис А. Д. , Элементы теории математических моделей. - 3-е изд., испр. - М.: КомКнига, 2007. - 192 с ISBN 978-5-484-00953-4 , с. 35.
  15. «Описание концептуальной модели системы. На этом подэтапе построения модели системы: а) описывается концептуальная модель М в абстрактных терминах и понятиях; б) дается описание модели с использованием типовых математических схем; в) принимаются окончательно гипотезы и предположения; г) обосновывается выбор процедуры аппроксимации реальных процессов при построении модели.» Советов Б. Я., Яковлев С. А. , Моделирование систем: Учеб. для вузов - 3-е изд., перераб. и доп. - М.: Высш. шк., 2001. - 343 с. ISBN 5-06-003860-2 , с. 93.
  16. Блехман И. И., Мышкис А. Д.,

← Вернуться

×
Вступай в сообщество «lenew.ru»!
ВКонтакте:
Я уже подписан на сообщество «lenew.ru»