Скорость поляризации диэлектрика. Диэлектрики и их свойства, поляризация и пробивная напряженность диэлектриков. В зависящем от времени поле

Подписаться
Вступай в сообщество «lenew.ru»!
ВКонтакте:

В зависимости от концентрации свободных зарядов тела делятся на проводники (n 0 ~10 28 ÷ 10 29 м -3), полупроводники (n 0 ~10 17 ÷ 10 19 м -3) и диэлектрики (n 0 ~10 9 ÷ 10 13 м -3).

Диэлектрики, как и любое другое вещество, состоят из нейтральных атомов и молекул. Если заменить весь положительный заряд молекулы одним точечным зарядом, помещенным в центре его распределения и аналогичным образом поступить с электронами, то каждую молекулу в этом случае можно рассматривать как электрический диполь. По этому признаку все диэлектрики можно разделить на три группы:

Первую группу образуют вещества с симметричным распределением как положительных, так и отрицательных зарядов в молекуле. Для таких молекул центры распределения положительных зарядов и электронов совпадают. Они называются неполярными. Их дипольный момент . Под воздействием внешнего поля разноименные заряды таких молекул смещаются вдоль силовых линий в противоположные стороны. При этом возникает дипольный момент, направленный по полю (N 2 , H 2 , O 2 , CO 2 , CH 4).

Вторую группу составляют материалы, молекулы которых имеют ассиметричное распределение зарядов. Такие молекулы называются полярными. Они обладают собственным электрическим дипольным моментом . В обычных условиях вектора дипольных моментов отдельных молекул из-за теплового движения ориентированы хаотично. По этой причине суммарный момент тела равен нулю. Внешнее электрическое поле стремится сориентировать дипольные моменты таких молекул вдоль силовых линий поля. Это приведет к возникновению результирующего, не равного нулю, электрического момента всего диэлектрика. Примеры: Н 2 О, NН 3. SO 2 , CО.

К третьему типу относятся диэлектрики, имеющие кристаллическое строение с правильным чередованием ионов разных знаков. Их структуру можно рассматривать как систему двух, вдвинутых одна в другую, ионных подрешеток. Под воздействием поля происходит небольшое встречное смещение кристаллографических плоскостей: плоскости, содержащие положительно заряженные ионы, смещаются по полю, а плоскости, образованные отрицательными ионами, - против поля. Это приводит к возникновению некоторого результирующего дипольного момента всего кристалла.

Процесс ориентации дипольных моментов или их появление под воздействием внешнего электрического поля, что приводит к возникновению электрического момента у каждого элемента объема диэлектрика, называется поляризацией диэлектриков.

Различают три вида такой поляризации:

1. Электронная или деформационная – заключается в возникновении индуцированных дипольных моментов атомов вследствие деформации электронных оболочек, т.е. смещении электронных орбиталей относительно ядер.

2. Ориентационная или дипольная – упорядочение в расположении существующих дипольных моментов.

3. Ионная – возникает в результате встречного смещения кристаллических подрешёток: состоящей из положительно заряженных ионы по полю, а образованной отрицательными ионами – против поля. Количественно поляризация характеризуется поляризованностью (вектором поляризации)– векторной величиной, определяемой как суммарный дипольный момент единицы объёма диэлектрика:

, (21)

где р i – дипольный момент одной молекулы; р v – суммарный дипольный момент всего диэлектрика.

Из опыта известно, что для большого класса диэлектриков (за исключением сегнетоэлектриков) поляризованность линейно зависит от напряжённости внешнего поля :

где – напряжённость электрического поля в точке, для которой определяется ; χ (хи) – диэлектрическая восприимчивость вещества;

χ – всегда положительная, безразмерная величина. Для большинства диэлектриков (твёрдых и жидких) χ составляет всего несколько единиц (хотя, например, для спирта χ ≈ 25, а для воды χ = 80).

Для установления количественных за­кономерностей поля в диэлектрике внесем в однородное внешнее электростатическое поле Е 0 (создается двумя параллельными разноименно заряженны­ми плоскостями) пластинку из однородно­го диэлектрика, расположив ее перпендикулярно силовым линиям поля. Под действием поля диэлектрик поляризуется, т.е. происходит смещение зарядов: положительные смещаются по полю, отрицательные – против поля. В результате этого на грани диэлектрика, обращенной к отрицатель­ной плоскости, будет избыток положитель­ного заряда с поверхностной плотностью +σ, на левой – отрицательного заряда с поверхностной плотностью –σ. Эти не-скомпенсированные заряды, появляющие­ся в результате поляризации диэлектрика, называются связанными. Так как их по­верхностная плотность σ меньше плотно­

В результате поляризации на поверхности диэлектрика появляются связанные заряды (рис.). Вектор напряжённости поля связанных зарядов направлен внутри диэлектрика противоположно вектору напряжённости внешнего поля, вызвавшего поляризацию (рис.). Теперь, в соответствии с принципом суперпозиции, напряжённость поля внутри диэлектрика.

Отнесенный к единице объема диэлектрика. Иногда вектор поляризации коротко называют просто поляризацией.

  • Вектор поляризации применим для описания макроскопического состояния поляризации не только обычных диэлектриков, но и сегнетоэлектриков , и, в принципе, любых сред, обладающих сходными свойствами. Он применим не только для описания индуцированной поляризации, но и спонтанной поляризации (у сегнетоэлектриков).

Поляризация - состояние диэлектрика, которое характеризуется наличием электрического дипольного момента у любого (или почти любого) элемента его объема.

Различают поляризацию, наведенную в диэлектрике под действием внешнего электрического поля, и спонтанную (самопроизвольную) поляризацию, которая возникает в сегнетоэлектриках в отсутствие внешнего поля. В некоторых случаях поляризация диэлектрика (сегнетоэлектрика) происходит под действием механических напряжений, сил трения или вследствие изменения температуры.

Поляризация не изменяет суммарного заряда в любом макроскопическом объеме внутри однородного диэлектрика. Однако она сопровождается появлением на его поверхности связанных электрических зарядов с некоторой поверхностной плотностью σ. Эти связанные заряды создают в диэлектрике дополнительное макроскопическое поле с напряженностью Е 1 , направленное против внешнего поля с напряженностью Е 0 . Результирующая напряженность поля Е внутри диэлектрика Е=Е 0 -Е 1 .

Типы поляризации

В зависимости от механизма поляризации, поляризацию диэлектриков можно подразделить на следующие типы:

  • Электронная - смещение электронных оболочек атомов под действием внешнего электрического поля. Самая быстрая поляризация (до 10 −15 с). Не связана с потерями.
  • Ионная - смещение узлов кристаллической структуры под действием внешнего электрического поля, причем смещение на величину, меньшую, чем величина постоянной решетки . Время протекания 10 −13 с, без потерь.
  • Дипольная (Ориентационная) - протекает с потерями на преодоление сил связи и внутреннего трения. Связана с ориентацией диполей во внешнем электрическом поле.
  • Электронно-релаксационная - ориентация дефектных электронов во внешнем электрическом поле.
  • Ионно-релаксационная - смещение ионов, слабо закрепленных в узлах кристаллической структуры, либо находящихся в междуузлие.
  • Структурная - ориентация примесей и неоднородных макроскопических включений в диэлектрике. Самый медленный тип.
  • Самопроизвольная (спонтанная) - благодаря этому типу поляризации у диэлектриков, у которых он наблюдается, поляризация проявляет существенно нелинейные свойства даже при малых значениях внешнего поля, наблюдается явление гистерезиса . Такие диэлектрики (сегнетоэлектрики) отличаются очень высокими значениями диэлектрической проницаемости (от 900 до 7500 у некоторых видов конденсаторной керамики). Введение спонтанной поляризации, как правило, увеличивает тангенс угла потерь материала (до 10 −2)
  • Резонансная - ориентация частиц, собственные частоты которых совпадают с частотами внешнего электрического поля.
  • Миграционная поляризация обусловлена наличием в материале слоев с различной проводимостью, образованию объемных зарядов, особенно при высоких градиентах напряжения, имеет большие потери и является поляризацией замедленного действия.

Поляризация диэлектриков (за исключением резонансной) максимальна в статических электрических полях. В переменных полях, в связи с наличием инерции электронов, ионов и электрических диполей, вектор электрической поляризации зависит от частоты. В связи с этим вводится понятие дисперсии диэлектрической проницаемости.

Зависимость вектора поляризации от внешнего поля

В постоянном поле

В слабых полях

В постоянном или достаточно медленно меняющемся от времени внешнем электрическом поле при достаточно малой величине напряженности этого поля, вектор поляризации P , как правило (исключение составляют сегнетоэлектрики), линейно зависит от вектора напряженности поля E :

(в системе СГС), (в системе СИ ; дальше формулы в этом параграфе приводятся только в СГС, формулы СИ и дальше отличаются лишь электрической постоянной )

где - коэффициент, зависящий от химического состава, концентрации, структуры (в том числе от агрегатного состояния) среды, температуры, механических напряжений и т. д. (от одних факторов более сильно, от других слабее, конечно же и в зависимости от диапазона изменений каждого), и называемый (электрической) поляризуемостью (а чаще, по крайней мере для того случая, когда он выражается скаляром - диэлектрической восприимчивостью) данной среды. Для однородной среды фиксированного состава и структуры в фиксированных условиях ее можно считать константой. Однако в связи со всем сказанным выше вообще говоря зависит от точки пространства, времени (явно или через другие параметры) и т. д.

Для изотропных жидкостей, изотропных твердых тел или кристаллов достаточно высокой симметрии - просто число (скаляр). В более общем случае (для кристаллов низкой симметрии, под действием механических напряжений и т. д.) - тензор (симметричный тензор второго ранга, вообще говоря невырожденный), называемый тензором поляризуемости . В этом случае можно переписать формулу так (в компонентах):

где величины со значками соответствуют компонентам векторов и тензора, соответствующим трем пространственным координатам.

Можно заметить, что поляризуемость - одна из наиболее удобных физических величин для простой иллюстрации физического смысла тензоров и применения их в физике.

Как и для всякого симметричного невырожденного тензора второго ранга, для тензора поляризуемости можно выбрать (если среда неоднородная - то есть тензор зависит от точки пространства - то по крайней мере локально, если же среда однородная, то и глобально) т. н. собственный базис - прямоугольные декартовы координаты, в которых матрица становится диагональной, а тогда - только в этих координатах(!) - запись немного упрощается:

где - три собственных числа тензора поляризуемости.

Если все эти три собственных числа равны друг другу, значит умножение на тензор эквивалентно умножению на число, а среда изотропна (в отношении поляризуемости). (Отсюда ясно, почему кристалл с высокой симметрией не может давать анизотропии: требованиям симметрии могут удовлетворить только три одинаковых собственных числа).

В сильных полях

В достаточно сильных полях всё описанное выше осложняется тем, что по мере роста напряженности электрического поля рано или поздно теряется линейность зависимости P от E .

Характер появляющейся нелинейности и характерная величина поля, с которой нелинейность становится заметной, тоже, конечно, зависит от индивидуальных свойств среды, условий итп.

Можно выделить их связь с , описанными выше.

Так для электронной и ионной поляризации при полях, приближающихся к величинам порядка отношения потенциала ионизации к характерному размеру молекулы U 0 /D , характерно сначала ускорение роста вектора поляризации с ростом поля (увеличение наклона графика P(E) ), затем плавно переходящее в пробой диэлектрика.

Дипольная (Ориентационная) поляризация при обычно несколько более низких значениях напряженности внешнего поля - порядка kT/p (где p - дипольный момент молекулы, T - температура, k - константа Больцмана) - то есть когда энергия взаимодействия диполя (молекулы) с полем становится сравнимой со средней энергией теплового движения (вращения) диполя - наоборот начинает достигать насыщения (при дальнейшем росте напряженности поля должен рано или поздно включиться сценарий электронной или ионной поляризации, описанный выше, и кончающийся пробоем).

В зависящем от времени поле

Зависимость вектора поляризации от быстро меняющегося во времени внешнего поля достаточно сложна. Она зависит от конкретного вида изменения внешнего поля со временем, быстроты этого изменения (или, скажем, частоты колебаний) внешнего поля, превалирующего поляризации в данном веществе или среде (который тоже оказывается разным для разных зависимостей внешнего поля от времени, частот и т. д.).

При достаточно медленном изменении внешнего поля поляризация в целом происходит как в постоянном поле или очень близко к этому (впрочем то, насколько медленным должно быть для этого изменение поля, зависит, и зачастую крайне сильно, от превалирующего типа поляризации и других условий, например температуры).

Одним из наиболее распространенных подходов к изучению зависимости поляризации от характера меняющегося во времени поля является исследование (теоретическое и экспериментальное) случая синусоидальной зависимости от времени внешнего поля и зависимости вектора поляризации (также меняющегося в этом случае по синусоидальному закону с той же частотой), его амплитуды и сдвига фазы от частоты.

Каждому механизму поляризации в целом соответствует тот или иной диапазон частот и общий характер зависимости от частоты.

Диапазон частот, в котором имеет смысл говорить о поляризации диэлектриков как таковой, простирается от нуля где-то до ультрафиолетовой области , в которой становится интенсивной ионизация под действием поля.

Основными электрическими процессами, возникающими в диэлектриках под воздействием приложенного напряжения, являются процессы поляризации, электропроводности и пробоя диэлектриков.

Поляризация представляет собой обратимое смещение электрически заряженных частиц, входящих в состав диэлектриков. Различают следующие основные виды поляризации: электронная, ионная, дипольная, спонтанная и некоторые другие.

Процесс поляризации диэлектриков описывается уравнением Клаузиуса - Мосотти

где - диэлектрическая проницаемость электроизоляционного материала; - число частиц (молекул, ионов) в 1 см3 материала; - поляризуемость частицы (молекула, ион); Р - удельная поляризация диэлектрика.

Уравнение Клаузиуса - Мосотти устанавливает связь между практической характеристикой материала - диэлектрической проницаемостью , физической постоянной материала и числом поляризующихся частиц в единице объема диэлектрика .

Электронная поляризация представляет собой процесс упругого смещения электронов (электронных орбит) относительно ядра во всех атомах диэлектрика. Процесс электронной поляризации является процессом мгновенным. Он происходит за время с. Электронная поляризация имеет место во всех диэлектриках.

Электронная поляризуемость зависит от структуры частицы. Чем больше радиус молекулы или иона, тем больше и величина данного диэлектрика.

В пропорциональной зависимости от числа частиц в единице объема диэлектрика находится и величина . С нагреванием, когда плотность диэлектрика уменьшается, наблюдается уменьшение ε нейтрального диэлектрика (рис. 5-1, кривая 1).

У диэлектриков с чисто электронной поляризацией величина численно равна квадрату показателя преломления света.

Процесс ионной поляризации представляет собой упругое смещение под действием электрического поля ионов относительно центров их равновесия. Поляризация ионного смещения происходит за время, сравнимое со временем собственных колебаний ионов, и составляет с.

Интенсивность процесса ионной поляризации в уравнении Клаузиуса - Мосотти учитывается величиной ионной поляризуемости :

где е - заряд иона; b - коэффициент упругой связи между ионами.

С повышением температуры ионного диэлектрика величина аи возрастает в связи с ослаблением упругих сил в ионном ди-электрике и увеличением амплитуды колебаний иона. Поэтому интенсивность процесса ионной поляризации возрастает с повышением температуры. В ионных диэлектриках одновременно с поляризацией ионного смещения развивается также процесс электронной поляризации - явление, которое с нагревом и расширением диэлектрика понижается, но суммарный эффект поляризации у большинства ионных диэлектриков возрастает (рис. 5-2) с повышением их температуры.

Рис. 5.2 Зависимость e от температуры для ионного кристаллического диэлектрика.

Электронная и ионная поляризации представляют собой виды деформационной поляризации, не вызывающие потерь энергии в диэлектриках. Дипольная (дипольно-релаксационная) поляризация протекает в полярных диэлектриках под действием электрического поля. Этот вид поляризации представляет собой ориентацию - поворот полярных молекул в направлении действующего электрического поля.

Поляризуемость полярных молекул ао определяется выражением

где - начальный электрический момент полярной молекулы; k - постоянная Больцмана; Т - абсолютная температура.

При повышении температуры диэлектрика интенсивность дипольной поляризации возрастает в связи с ослаблением междумолекулярных сил и понижением коэффициента внутреннего трения. Поэтому с повышением температуры вначале полярных диэлектриков увеличивается (рис. 5-1), С дальнейшим ростом температуры интенсивность хаотического теплового движения полярных молекул начинает преобладать над ориентирующим действием электрического поля и эффект дипольной поляризации понижается. Это в свою очередь вызывает уменьшение полярных диэлектриков.

Для ориентации полярных молекул в процессе дипольной поляризации требуются промежутки времен, значительно большие по сравнению со временем для процессов деформационных поляризаций. Естественно, диэлектрическая проницаемость полярных диэлектриков в сильной степени зависит от частоты электрического поля (рис. 5-3).

Рис. 5.3 Зависимость e от частоты для электроизоляционных жидкостей.
1-нейтральная жидкость; 2-полярная жидкость.

В начальном диапазоне частот полярные молекулы успевают совершить свой поворот за время одного полупериода. При этом практически равна при постоянном напряжении. С дальнейшим ростом частоты время одного полупериода сокращается и ряд молекул выпадает из процесса дипольной поляризации. При этом диэлектрическая проницаемость диэлектрика резко снижается, достигая (при очень больших частотах) значения , обусловленного только электронной поляризацией молекул диэлектрика. Критическая частота , с которой начинается резкое снижение эффекта дипольной поляризации, может быть определена по формуле

где - радиус полярной молекулы; - абсолютная вязкость; - постоянная Больцмана; - абсолютная температура.

Дипольная поляризация ярко выражена у полярных газов и жидкостей (касторовое масло, совол и др.). В твердых полярных диэлектриках дипольная поляризация представляет собой не ориентацию самих полярных молекул, а поворот имеющихся в молекулах полярных радикалов, например гидроксильных групп в молекулах целлюлозы, бакелита и др. Этот вид дипольно-релаксационной поляризации иногда называется структурной поляризацией. На рис. 5-4 представлена зависимость твердого полярного диэлектрика - галовакса от температуры при разных частотах.

Рис. 5.4 Зависимость e галовакса от температуры при разных частотах.

Значения диэлектрической проницаемости полярных диэлектриков зависят от размеров полярных молекул и величин их начального электрического момента. Чем меньше размер полярной молекулы - диполя и больше величина ее начального момента , тем больше данного диэлектрика. У полярных диэлектриков одновременно имеют место дипольная и электронная поляризации. Вследствие этого суммарный эффект поляризации полярных диэлектриков, а следовательно, и значения их диэлектрических проницаемостей намного выше, чем у нейтральных диэлектриков (табл. 5-1).

Дипольно-релаксационные поляризации вызывают потери энергии в диэлектриках, так как электрическое поле затрачивает энергию на поворот полярных молекул (диполей). Эта энергия рассеивается в полярных диэлектриках в виде тепла, которое вызывает нагрев последних. Потери мощности в диэлектриках, работающих в переменном поле, оцениваются тангенсом угла диэлектрических потерь . На рис. 5-5 показаны зависимости этой характеристики от температуры для нейтральной и црлярной жидкостей.

Рис. 5.5 Зависимость от температуры для электроизоляционных жидкостей.
1-нейтральная жидкость;
2-полярная жидкость.

У тщательно очищенных нейтральных диэлектриков диэлектрические потери обусловлены преимущественно токами проводимости, величины которых возрастают с повышением температуры диэлектрика. В связи с этим возрастает и . У полярных диэлектриков наблюдается максимум при такой величине вязкости диэлектрика, когда в процессе дипольной поляризации принимает участие наибольшее количество полярных молекул. Понижение величины с дальнейшим повышением температуры обусловлено ростом интенсивности беспорядочного теплового движения полярных молекул. Вторичный подъем вызван увеличением тока проводимости в диэлектрике.

На рис. 5-6 представлена частотная зависимость для полярной жидкости. Максимум здесь соответствует частоте , с которой начинается снижение величины (рис. 5-3) и . Это объясняется тем, что большинство полярных молекул выходит из процесса дипольной поляризации в связи с уменьшением времени одного полупериода при дальнейшем увеличении частоты электрического поля.

Рис. 5.6 Зависимость от частоты для полярной электроизоляционной жидкости.

Еще один вид релаксационной поляризации наблюдается в неорганических стеклах, а также в ионных кристаллических диэлектриках с неплотной упаковкой ионов (муллит в фарфоре и др.). В этих диэлектриках слабо связанные ионы, находящиеся в состоянии хаотических тепловых колебаний, перебрасываются электрическим полем. Этот процесс получил название ионно-релаксационной поляризации. Переброс слабо связанных ионов вызывает дополнительные потери энергии.

Самопроизвольная (спонтанная поляризация) представляет собой процесс самопроизвольной ориентации диполей, наблюдаемой внутри отдельных областей (доменов) диэлектрика в отсутствие электрического поля. Самопроизвольная поляризация имеет место у материалов, называемых сегнетоэлектриками.

В отсутствие электрического поля электрические моменты отдельных областей (доменов) диэлектрика направлены беспорядочно, но они взаимно уравновешивают друг друга. Наложение на диэлектрик электрического поля вызывает ориентацию диполей в направлении поля. При этом интенсивность поляризации резко возрастает, вследствие чего наблюдается сильный рост диэлектрической проницаемости сегнетоэлектрика. Этот процесс продолжается до определенной напряженности электрического поля, а затем наступает насыщение (рис. 5-7).

Рис. 5.7 Зависимость e сегнетоэлектрика от напряженности электрического поля

Дальнейшее повышение напряженности не увеличивает интенсивности поляризации, и рост прекращается. Диэлектрическая проницаемость сегнетоэлектрических материалов имеет также ярко выраженный максимум при вполне определенной температуре (рис. 5-8).

Рис. 5.8 Зависимость e сегнетоэлектрика (ВaTiО3) от температуры.

Эта температура называется сегнетоэлектрической температурой Кюри (). Наличие спонтанной поляризации обусловливает аномально большие значения у сегнетоэлектриков (сегнетова соль, титанат бария и др.). Процесс самопроизвольной поляризации сопровождается затратой энергии, рассеиваемой в диэлектриках в виде тепла.

Любое вещество, вне зависимости от его агрегатного состояния и деталей его атомно-молекулярного устройства, например, атомный, молекулярный или ионный кристалл и т. п., в конечном счете, состоит из положительно заряженных ядер и отрицательно заряженных электронов.

Поэтому механизм поляризации один - это смещение положительных зарядов по поляризующему полю и отрицательных зарядов против поляризующего поля (рис. 3.14). Здесь уместно подчеркнуть, что вещество поляризуется не внешним полем (см., например (3.2) выше), а суммарным полем , созданным как сторонними (не принадлежащими диэлектрику) зарядами, так и самим поляризованным веществом. В дальнейшем мы не будет специально это подчеркивать.

Рис. 3.14. Смещение положительных зарядов по поляризующему полю
и отрицательных зарядов против поляризующего поля

При исследовании поляризационных свойств конкретных веществ разумно и полезно выделять те главные особенности единого механизма перемещения зарядов под действием поляризующего поля, которые и определяют результат: степень и характер поляризованности вещества. Это приводит к рассмотрению целого ряда «частных» механизмов поляризации, таких как:

и многие другие.

Несколько слов по поводу упомянутой выше ионной поляризации, которая имеет место в кристаллах типа поваренной соли NaCl. Под действием поля положительно заряженные ионы натрия Na + и отрицательно заряженные ионы хлора Cl – смещаются в разные стороны из своих равновесных положений, из-за чего каждая элементарная ячейка кристалла приобретает электрический дипольный момент. Этот пример полезен в следующем смысле: как бы сложно ни был устроен диэлектрик - в данном случае ионный кристалл - его поляризация обусловлена смещением в противоположные стороны положительных и отрицательных зарядов. Вопрос в том, какие конкретно носители заряда способны к такому перемещению: свободные электроны в металле, сильно связанные с ядрами электроны электронной оболочки нейтральных атомов или молекул в газе или жидкости, ионы в узлах кристаллической решетки и так далее. Определяется это тем, как устроен диэлектрик.

Процессы, происходящие в диэлектрике при его поляризации, можно понять, исходя из представлений о диэлектрике как о среде, состоящей из попарно связанных разноименных зарядов. В отличие от проводников в диэлектриках нет свободных зарядов, которые под действием внешнего поля могут двигаться по всему объему образца. Заряды, входящие в состав молекул диэлектрика, прочно связаны между собой и способны перемещаться только в пределах своей молекулы (или атома), то есть на расстоянии порядка см.

Практически во всех тех случаях, когда диэлектрик состоит из электрически нейтральных частиц (атомов и молекул), независимо от его агрегатного состояния, возможно сведение всех «подмеханизмов» поляризации к двум видам. Для этого принято делить все атомы и молекулы и состоящие из них диэлектрики на два класса:


Рис. 3.15. Поляризация неполярного диэлектрика

Рис. 3.16. Ориентационный механизм поляризации полярного диэлектрика

Здесь - вектор дипольного момента одной молекулы, суммирование ведётся по всем молекулам, находящимся внутри физически бесконечно малого объема . Например, рассмотрим однородно поляризованный шар (рис. 3.17).

Рис. 3.17. Поляризованность и электрическое поле однородно поляризованного шара

При поляризации неполярного диэлектрика электронная оболочка атома или молекулы деформируется - электроны смещаются против поляризующего поля, ядра смещаются по полю. Возникает некоторое расстояние между ранее (в отсутствие поляризующего поля) совпадавшими центрами положительных и отрицательных зарядов. В результате атом или молекула приобретают некоторый наведенный дипольный момент.

Более или менее очевидно, что наведенный дипольный момент будет пропорционален величине внешнего электрического поля. Понять это можно, рассматривая поведение потенциальной энергии П(x ) взаимодействия двух частиц, где х - расстояние между ними. Пусть равновесному состоянию соответствует расстояние (частицы находятся в одной точке и дипольный момент отсутствует). При малых отклонениях от положения равновесия в разложении потенциальной энергии в ряд Тейлора можно ограничиться несколькими первыми членами

Учитывая, что первая производная в точке равновесия равна нулю и что вторая производная в этой точке положительна , получаем, что вблизи точки устойчивого равновесия потенциальная энергия ведет себя как

Соответственно, при отклонении от этого положения возникает сила

,

подобная силе упругости при растяжении пружины. Если заряды в молекуле «соединены» такой «пружиной», то при наложении поля Е новое равновесное расстояние между частицами будет определяться соотношением

В результате находим величину возникшего под действием поля дипольного момента

Умножая наведенный дипольный момент на концентрацию поляризованных молекул N /V (N - их полное число в объеме V ), получаем поляризованность диэлектрика

Если записать поляризованность (3.16) в виде

где константа (для данного вещества) по определению есть диэлектрическая восприимчивость вещества, то для , то в рамках данной модели диэлектрическую восприимчивость можно вычислить по нижеследующей формуле

У молекул, называемых полярными, центры положительных и отрицательных зарядов сдвинуты друг относительно друга, поэтому такая молекула имеет собственный дипольный момент. При помещении такой молекулы в электрическое поле её электронная оболочка деформируется, расстояние между центрами зарядов увеличивается и к исходному собственному дипольному моменту добавляется некоторый наведенный дипольный момент. Однако, можно показать, что этот дополнительный наведенный дипольный момент много меньше собственного. Разумеется, это справедливо, если поляризующее поле много меньше поля, существующего внутри молекулы. По порядку величины внутримолекулярное поле равно атомной единице напряженности электрического поля: В/м. В написанном выражении для атомной единицы напряженности электрического поля масса электрона, его заряд, постоянная Планка. Учитывая, что, например, «пробойная» - приводящая к искровому разряду – напряженность поля для сухого воздуха составляет всего В/м, то есть на пять порядков меньше, можно утверждать, что в подавляющем большинстве экспериментов наведенным дипольным моментом, при наличии собственного, можно пренебречь. В дальнейшем, при рассмотрении поляризации дипольных диэлектриков, этот эффект (наведение дополнительного момента) учитываться не будет.

Векторы собственных дипольных моментов отдельных молекул в обычном состоянии из-за теплового движения ориентированы хаотически. Поэтому при отсутствии внешнего электрического поля средний суммарный дипольный момент любого физически бесконечно малого объема диэлектрика равен нулю. Другими словами, диэлектрик не поляризован: его поляризованность равна нулю.

Внешнее электрическое поле стремится ориентировать дипольные моменты молекул параллельно вектору , а тепловое движение этому препятствует, диэлектрик поляризуется, при этом его поляризованность должна зависеть от температуры, а именно: с ростом температуры она должна убывать. Ниже эта зависимость вычисляется, также будет показано, что и в случае полярных диэлектриков их поляризованность пропорциональна напряженности поляризующего поля. Такая поляризация называется ориентационной (рис. 3.18).

Рис. 3.18. Ориентационная поляризация диэлектрика

В соответствии с формулой (3.8) потенциальная энергия диполя во внешнем поле Е зависит от ориентации диполя

Согласно статистическому закону Больцмана (рис 3.19), описывающему распределение частиц по энергиям во внешнем поле в условиях термодинамического равновесия, число молекул, дипольный момент которых ориентирован под углом , к внешнему полю, определяется как

Здесь С - нормировочная постоянная, значение которой мы найдем позже, Т - абсолютная температура, постоянная Больцмана - k B = 1,38·10 –23 Дж/К. Вследствие малости дипольного момента молекул, для обычных (не слишком низких) температур показатель экспоненты мал, и мы можем разложить экспоненту в ряд Тейлора, оставляя первые два члена

Рис. 3.19. Л. Больцман (1844–1906) - австрийский физик

Подчеркнем, что использование приближенного выражения (3.18) и всех выводов, следующих из него, оправдано при не слишком низких температурах, когда . Не представляет труда точное вычисление с использованием (3.17) вместо приближенного (3.18), которое читатель может проделать самостоятельно.

Интеграл по полному телесному углу должен дать полное число N молекул в системе. Поскольку среднее значение косинуса равно нулю, то интегрируется лишь первое слагаемое в (3.18). Так как значение полного телесного угла равно , получаем

Теперь мы знаем постоянную С и можем записать выражение (3.18) в виде

Необходимо определить значение проекции суммарного дипольного момента на направление поля (другие проекции заведомо равны нулю ввиду осевой симметрии задачи). Проекция дипольного момента одной молекулы равна рcosa, следовательно полный дипольный момент Р всех молекул в единице объема равен

Интеграл по равен , а интеграл по вычисляется с помощью замены переменной

Находим тогда

Из (3.21) вытекает, что и в случае дипольной ориентационной поляризации вещества поляризованность пропорциональна напряженности электрического поля. Более того, мы нашли зависимость поляризованности от температуры. Это закон Кюри, который подтверждается на опыте (рис. 3.20).

Рис. 3.20. Зависимость поляризованности полярного диэлектрика от температуры (точное решение)

Подводя итоги данного раздела, мы вкратце повторим основные выводы. Внешнее электрическое поле либо создает дипольные моменты, ориентированные по полю, либо ориентирует дипольные моменты отдельных молекул, и диэлектрик приобретает определенный макроскопический дипольный момент. Вектор называется поляризованностью диэлектрика. Он пропорционален напряженности внешнего электрического поля, и эту связь можно представить в виде

то вектор поляризации в СИ измеряется в Кл/м 2 . Его размерность совпадает с размерностью поверхностной плотности зарядов. Это наводит на мысль, что вектор поляризованности связан с плотностью поляризационных зарядов, возникающих на поверхности и в объеме диэлектрика, помещенного во внешнее поле (рис. 3.21).

Рис. 3.21. Вектор поляризованности и плотность поляризационных зарядов

Пропорциональность между поляризованностью Р и напряженностью Е внешнего электростатического поля объясняется в случае электронной и ионной поляризации тем, что с увеличением Е растут дипольные моменты отдельных атомов p i . При дипольной поляризации пропорционально увеличению напряженности внешнего электростатического поля увеличивается степень ориентации векторов p i . Выше мы нашли общие формулы для диэлектрической восприимчивости при различных видах поляризации. Следует подчеркнуть, что они справедливы для газов: мы не учитывали влияния молекул друг на друга, что допустимо для систем, где частицы не слишком плотно упакованы. Но общий вывод остается справедливым и для конденсированных сред (жидкостей и твердых тел): под действием внешнего электрического поля единица объема диэлектрика приобретает дипольный момент Р ; в простейших случаях имеет место линейная зависимость

В полную диэлектрическую восприимчивость диэлектрика дают вклад все три рассмотренных механизма:

Обычно редко бывает, чтобы все доли диэлектрической восприимчивости были одинаково велики. Скажем, в ионных кристаллах дипольная часть вообще отсутствует. Экспериментально вклад каждой доли можно найти, измеряя диэлектрические проницаемости при разных частотах электромагнитной волны. При низких частотах (статическое поле, которым мы сейчас занимаемся) вклад дают все три доли диэлектрической восприимчивости (рис. 3.22).

Рис. 3.22. Зависимость полной диэлектрической восприимчивости диэлектрика
от частоты электромагнитной волны. Указаны диапазоны частот:
I - область радио- и микроволн, II - инфракрасная область, III - ультрафиолетовая область

При повышении частоты первым исчезнет вклад дипольной части: молекулы не будут успевать поворачиваться, следуя быстро изменяющемуся электрическому полю волны. Переход к новому режиму осуществляется обычно при частотах радиодиапазона. При дальнейшем росте частоты исчезнет вклад ионной части: ионы более инерционны, нежели электроны. В диапазоне оптических частот доминирует электронная доля поляризации. При переходе к еще более высоким частотам - за ультрафиолетовой областью - даже электронные облачка не будут успевать следовать за изменениями электрического поля и поляризуемость диэлектрика исчезнет.

Приведем пример: у поваренной соли NaCl диэлектрическая проницаемость в статическом поле равна 5,62, а в поле электромагнитной волны оптического диапазона - всего лишь 2,25. Дипольная поляризуемость в таких кристаллах отсутствует, и различие следует приписать ионной поляризуемости.

Дополнительная информация

http://science.hq.nasa.gov/kids/imagers/ems/index.html - электромагнитные волны, шкала электромагнитных волн;

http://science.hq.nasa.gov/kids/imagers/ems/radio.html - радиоволны;

http://www.nrao.edu/index.php/learn/radioastronomy/radiowaves - радиоволны, источники радиоволн.

Типы диэлектриков. Поляризация диэлектриков. Поляризованность.

Диэлектриками называются вещества, которые в обычных условиях практически не проводят электрический ток, их удельное сопротивление в раз больше, чем у металлов. Согласно представлениям классической физики, в диэлектриках, в отличие от проводников, нет свободных носителей заряда, которые могли бы под действием электрического поля создавать ток проводимости. К диэлектрикам относятся все газы; некоторые жидкости (дистиллированная вода, масла, бензол); твердые тела (стекло, фарфор, слюда). Термины "диэлектрик" и "диэлектрическая постоянная" были введены в науку в 1837 г. M. Фарадеем. Диэлектрики, как и любые вещества, состоят из атомов и молекул. В целом молекулы нейтральны, тем не менее, они взаимодействуют с электрическим полем. Например, в случае, когда симметрия молекулы отлична от сферической, ее можно представить в виде электрического диполя . Электрический дипольный момент молекулы , где q - суммарный заряд ядер или электронов; l - вектор, представляющий собой плечо эквивалентного диполя. Молекулы, обладающие электрическим дипольным моментом, называют полярными. Полярным диэлектриком является вода; следующие вещества: CO; N 2 O; S 2 O; NH; HCl также имеют в своем составе полярные молекулы. В объеме вещества дипольные моменты молекул распределены по разным направлениям хаотическим образом, так что их сумма равна нулю . Молекулы, у которых положения эквивалентного положительного и эквивалентного отрицательного заряда совпадают и, следовательно, дипольный момент каждой молекулы равен нулю (), называют неполярными . Такие вещества, как состоят из неполярных молекул. Если диэлектрик внести в электрическое поле, то это поле и сам диэлектрик претерпевают существенные изменения.

Поляризация диэлектриков - явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей, обычно под воздействием внешнего электрического поля, иногда под действием других внешних сил или спонтанно.

Поляризацию диэлектриков характеризует вектор электрической поляризации . Физический смысл вектора электрической поляризации - это дипольный момент, отнесенный к единице объема диэлектрика. Иногда вектор поляризации коротко называют просто поляризацией.

    Вектор поляризации применим для описания макроскопического состояния поляризации не только обычных диэлектриков, но и сегнетоэлектриков, и, в принципе, любых сред, обладающих сходными свойствами. Он применим не только для описания индуцированной поляризации, но и спонтанной поляризации (у сегнетоэлектриков).

Поляризация - состояние диэлектрика, которое характеризуется наличием электрического дипольного момента у любого (или почти любого) элемента его объема.

Различают поляризацию, наведенную в диэлектрике под действием внешнего электрического поля, и спонтанную (самопроизвольную) поляризацию, которая возникает в сегнетоэлектриках в отсутствие внешнего поля. В некоторых случаях поляризация диэлектрика (сегнетоэлектрика) происходит под действием механических напряжений, сил трения или вследствие изменения температуры.

Поляризация не изменяет суммарного заряда в любом макроскопическом объеме внутри однородного диэлектрика. Однако она сопровождается появлением на его поверхности связанных электрических зарядов с некоторой поверхностной плотностью σ. Эти связанные заряды создают в диэлектрике дополнительное макроскопическое поле с напряженностью Е 1 , направленное против внешнего поля с напряженностью Е 0 . Результирующая напряженность поля Е внутри диэлектрика Е=Е 0 -Е 1 .

Если поместить диэлектрик во внешнее электрическое поле, то он поляризуется, т. е. получит неравный нулю дипольный момент p V =∑p i где p i - дипольный момент одной молекулы. Чтобы произвести количественное описание поляризации диэлектрика вводят векторную величину - поляризованность , которая определяется как дипольный момент единицы объема диэлектрика: (1) Из опыта известно, что для большого класса диэлектриков (за исключением сегнетоэлектриков, см. далее) поляризованность Р зависит от напряженности поля Е линейно. Если диэлектрик изотропный и Е численно не слишком велико, то (2) где θ - диэлектрическая восприимчивость вещества , она характеризует свойства диэлектрика; θ – безразмерная величина; притом всегда θ>0 и для большинства диэлектриков (жидких и твердых) составляет несколько единиц (но, например, для спирта θ≈25, для воды θ≈80). Для определения количественных закономерностей электрического поля в диэлектрике поместим в однородное внешнее электрическое поле Е 0 (к примеру, между двумя бесконечными параллельными разноименно заряженными плоскостями) пластинку из однородного диэлектрика, расположив ее, согласно рис. 1. Под действием поля диэлектрик поляризуется, т. е. осуществляется смещение зарядов: положительные смещаются по направлению поля, отрицательные - против направления поля. В результате, на правой грани диэлектрика, который обращен к отрицательной плоскости, будет избыток положительного заряда с поверхностной плотностью +σ", на левой грани - отрицательного заряда с поверхностной плотностью –σ". Эти нескомпенсированные заряды, которые появляются в результате поляризации диэлектрика, называются связанными . Поскольку их поверхностная плотность σ" меньше плотности σ свободных зарядов плоскостей, то не все поле Е компенсируется полем зарядов диэлектрика: часть линий напряженности проходит сквозь диэлектрик, другая же часть - останавливается на связанных зарядах. Значит, поляризация диэлектрика вызывает уменьшение в нем поля по сравнению с первоначальным внешним полем. Вне диэлектрика Е = Е 0 .

← Вернуться

×
Вступай в сообщество «lenew.ru»!
ВКонтакте:
Я уже подписан на сообщество «lenew.ru»