Равновесие тел. Виды равновесия тел. Условие равновесия механической системы в обобщённых координатах Статическое и динамическое равновесие тел

Подписаться
Вступай в сообщество «lenew.ru»!
ВКонтакте:

Позволяет провести анализ общих закономерностей движения, если известна зависимость потенциальной энергии от координат. Рассмотрим для примера одномерное движение материальной точки (частицы), вдоль оси 0x в потенциальном поле, показанном на рис. 4.12.

Рис.4.12. Движение частицы вблизи положений устойчивого и неустойчивого равновесия

Поскольку в однородном поле сил тяжести потенциальная энергия пропорциональна высоте подъема тела, можно представить себе ледяную горку (пренебрегаем трением) с профилем, соответствующим функции П(x) на рисунке.

Из закона сохранения энергии E = К + П и из факта, что кинетическая энергия К = Е - П всегда неотрицательна, следует, что частица может находиться лишь в областях, где E > П . На рисунке частица с полной энергией E может двигаться только в областях

В первой области ее движение будет ограничено (финитно): при данном запасе полной энергии частица не может преодолеть «горок» на своем пути (их называют потенциальными барьерами ) и обречена вечно оставаться в «долине» между ними. Вечно - с точки зрения классической механики, которую мы сейчас изучаем. В конце курса мы увидим, как квантовая механика помогает частице выбраться из заточения в потенциальной яме - области

Во второй области движение частицы не ограничено (инфинитно), она может удалиться бесконечно далеко от начала координат направо, но слева ее движение по-прежнему ограничено потенциальным барьером:

Видео 4.6. Демонстрация финитного и инфинитного движений.

В точках экстремума потенциальной энергии x MIN и x MAX сила, действующая на частицу, равна нулю, потому что равна нулю производная потенциальной энергии:

Если поместить в эти точки покоящуюся частицу, то она оставалась бы там... опять-таки вечно, если бы не флуктуации ее положения. В этом мире нет ничего строго покоящегося, частица может испытывать небольшие отклонения (флуктуации ) от положения равновесия. При этом, естественно, возникают силы. Если они возвращают частицу к положению равновесия, то такое равновесие называется устойчивым . Если же при отклонении частицы возникающие силы еще дальше уводят ее от равновесного положения, то мы имеем дело с неустойчивым равновесием, и частица в таком положении обычно долго не задерживается. По аналогии с ледяной горкой можно догадаться, что устойчивым будет положение в минимуме потенциальной энергии, а неустойчивым - в максимуме.

Докажем, что это действительно так. Для частицы в точке экстремума x M (x MIN или x MAX ) действующая на нее сила F x (x M) = 0 . Пусть вследствие флуктуации координата частицы изменяется на небольшую величину x . При таком изменении координаты на частицу начнет действовать сила

(штрихом обозначена производная по координате x ). Учитывая, что F x =-П" , получаем для силы выражение

В точке минимума вторая производная потенциальной энергии положительна: U"(x MIN) > 0 . Тогда при положительных отклонениях от положения равновесия x > 0 возникающая сила отрицательна, а при x <0 сила положительна. В обоих случаях сила препятствует изменению координаты частицы, и положение равновесия в минимуме потенциальной энергии устойчиво.

Наоборот, в точке максимума вторая производная отрицательна: U"(x MAX)<0 . Тогда увеличение координаты частицы Δx приводит к возникновению положительной же силы, еще больше увеличивающей отклонение от положения равновесия. При x <0 сила отрицательна, то есть и в этом случае способствует дальнейшему отклонению частицы. Такое положение равновесия неустойчиво.

Таким образом, положение устойчивого равновесия может быть найдено при совместном решении уравнения и неравенства

Видео 4.7. Потенциальные ямы, потенциальные барьеры и равновесие: устойчивое и неустойчивое.

Пример . Потенциальная энергия двухатомной молекулы (например, Н 2 или О 2 ) описывается выражением вида

где r - расстояние между атомами, а A , B - положительные постоянные. Определить равновесное расстояние r М между атомами молекулы. Устойчива ли двухатомная молекула?

Решение . Первый член описывает отталкивание атомов на малых расстояниях (молекула сопротивляется сжатию), второй - притяжение на больших расстояниях (молекула сопротивляется разрыву). В соответствии со сказанным, равновесное расстояние находится при решении уравнения

Дифференцируя потенциальную энергию, получаем

Находим теперь вторую производную потенциальной энергии

и подставляем туда значение равновесного расстояния r M :

Положение равновесия устойчиво.

На рис. 4.13 представлен опыт по изучению потенциальных кривых и условий равновесия шарика. Если на модели потенциальной кривой поместить шарик на высоту большую высоты потенциального барьера (энергия шарика больше энергии барьера), то шарик преодолевает потенциальный барьер. Если начальная высота шарика меньше высоты барьера, то шарик остается в пределах потенциальной ямы.

Шарик, помещенный в наивысшую точку потенциального барьера, находится в неустойчивом равновесии, поскольку любое внешнее воздействие приводит к переходу шарика в нижнюю точку потенциальной ямы. В нижней точке потенциальной ямы шарик находится в устойчивом равновесии, поскольку любое внешнее воздействие приводит к возвращению шарика в нижнюю точку потенциальной ямы.

Рис. 4.13. Экспериментальное изучение потенциальных кривых

Дополнительная информация

http://vivovoco.rsl.ru/quantum/2001.01/KALEID.PDF – Приложение к журналу «Квант» - рассуждения об устойчивом и неустойчивом равновесии (А. Леонович);

http://mehanika.3dn.ru/load/24-1-0-3278 – Тарг С.М. Краткий курс теоретической механики, Изд,Высшая школа, 1986 г. – стр. 11–15, §2 – исходные положения статики.

Известно, что для равновесия системы с идеальными связями необходимо и достаточно, чтобы или. (7)

Поскольку вариации обобщённых координат являются независимыми друг от друга и, в общем случае, не равны нулю, нужно, чтобы
,
,…,
.

Для равновесия системы с голономными удерживающими, стационарными, идеальными связями необходимо и достаточно, чтобы все обобщённые силы, соответствующие выбранным обобщёным координатам были бы равны нулю.

Случай потенциальных сил:

Если система находится в потенциальном силовом поле, то

,
,…,

,
,…,

То есть положения равновесия системы могут быть только при тех значениях обобщённых координат, при которых силовая функция U и потенциальная энергия П имеют экстремальные значения (max или min ).

Понятие об устойчивости равновесия.

Определив положения, в которых система может находиться в равновесии, можно определить какие из этих положений реализуемые, а какие нереализуемые, то есть определить: какое положение является является устойчивым, а какое – неустойчивым.

В общем случае необходимый признак устойчивости равновесия по Ляпунову можно сформулировать следующим образом:

Выведем систему из положения равновесия, сообщив небольшие по модулю значения обобщённых координат и их скоростям. Если при дальнейшем рассмотрении системы обобщённые координаты и их скорости будут оставаться по модулю малымивеличинами, то есть система не будет далеко отклоняться от положения равновесия, то такое положение равновесия – устойчиво.

Достаточное условие устойчивости равновесия системы определяется теоремой Лагранжа-Дирихля :

Если в полодении равновесия механической системы с идеальными связями потенциальная энергия имеет минимальное значение, то такое положение равновесия – устойчивое.



,
- устойчивое.

Важным случаем движения механических систем является их колебательное движение. Колебания - это повторяющиеся движения механической системы относительно некоторого ее положения, происходящие более или менее регулярно во времени. В курсовой работе рассматривается колебательное движение механической системы относительно положения равновесия (относительного или абсолютного) .

Механическая система может совершать колебания в течение достаточно длительного промежутка времени только вблизи положения устойчивого равновесия. Поэтому перед тем, как составить уравнения колебательного движения, надо найти положения равновесия и исследовать их устойчивость.

5.1. Условия равновесия механических систем

Согласно принципу возможных перемещений (основному уравнению статики), для того, чтобы механическая система, на которую наложены идеальные, стационарные, удерживающие и голономные связи, находилась в равновесии, необходимо и достаточно, чтобы в этой системе были равны нулю все обобщенные силы:

где Q j - обобщенная сила, соответствующая j - ой обобщенной координате;

s - число обобщенных координат в механической системе.

Если для исследуемой системы были составлены дифференциальные уравнения движения в форме уравнений Лагранжа II - го рода, то для определения возможных положений равновесия достаточно приравнять обобщенные силы нулю и решить полученные уравнения относительно обобщенных координат.

Если механическая система находится в равновесии в потенциальном силовом поле, то из уравнений (5.1) получаем следующие условия равновесия:

(5.2)

Следовательно, в положении равновесия потенциальная энергия имеет экстремальное значение. Не всякое равновесие, определяемое вышеприведенными формулами, может быть реализовано практически. В зависимости от поведения системы при отклонении от положения равновесия говорят об устойчивости или неустойчивости данного положения.

5.2. Устойчивость равновесия

Определение понятия устойчивости положения равновесия было дано в конце XIX века в работах русского ученого А. М. Ляпунова . Рассмотрим это определение.

Для упрощения выкладок условимся в дальнейшем обобщенные координаты q 1 , q 2 ,..., q s отсчитывать от положения равновесия системы:

, где

Положение равновесия называется устойчивым, если для любого сколь угодно малого числа > 0 можно найти такое другое число ( ) > 0 , что в том случае, когда начальные значения обобщенных координат и скоростей не будут превышать :

значения обобщенных координат и скоростей при дальнейшем движении системы не превысят

.

Иными словами, положение равновесия системы q 1 = q 2 = ...= q s = 0 называется устойчивым , если всегда можно найти такие достаточно малые начальные значения
, при которых движение системы
не будет выходить из любой заданной сколь угодно малой окрестности положения равновесия
. Для системы с одной степенью свободы устойчивое движение системы можно наглядно изобразить в фазовой плоскости (рис. 5.1). Для устойчивого положения равновесия движение изображающей точки, начинающееся в области [- , ] , не будет в дальнейшем выходить за пределы области [- , ] .

Положение равновесия называетсяасимптотически устойчивым , если с течением времени система будет приближаться к положению равновесия, то есть

Определение условий устойчивости положения равновесия представляет собой достаточно сложную задачу [ 4 ], поэтому ограничимся простейшим случаем: исследованием устойчивости равновесия консервативных систем.

Достаточные условия устойчивости положений равновесия для таких систем определяются теоремой Лагранжа - Дирихле : положение равновесия консервативной механической системы устойчиво, если в положении равновесия потенциальная энергия системы имеет изолированный минимум .

Потенциальная энергия механической системы определяется с точностью до постоянной. Выберем эту постоянную так, чтобы в положении равновесия потенциальная энергия равнялась нулю:

П(0)= 0.

Тогда для системы с одной степенью свободы достаточным условием существования изолированного минимума, наряду с необходимым условием (5.2), будет условие

Так как в положении равновесия потенциальная энергия имеет изолированный минимум и П(0) = 0 , то в некоторой конечной окрестности этого положения

П(q) > 0 .

Функции, имеющие постоянный знак и равные нулю только при нулевых значениях всех своих аргументов, называются знакоопределенными. Следовательно, для того, чтобы положение равновесия механической системы было устойчивым необходимо и достаточно, чтобы в окрестности этого положения потенциальная энергия была положительно определенной функцией обобщенных координат.

Для линейных систем и для систем, которые можно свести к линейным при малых отклонениях от положения равновесия (линеаризовать), потенциальную энергию можно представить в виде квадратичной формы обобщенных координат [ 2, 3, 9 ]

(5.3)

где - обобщенные коэффициенты жесткости.

Обобщенные коэффициенты являются постоянными числами, которые могут быть определены непосредственно из разложения потенциальной энергии в ряд или по значениям вторых производных от потенциальной энергии по обобщенным координатам в положении равновесия:

(5.4)

Из формулы (5.4) следует, что обобщенные коэффициенты жесткости симметричны относительно индексов

Для того, чтобы выполнялись достаточные условия устойчивости положения равновесия, потенциальная энергия должна быть положительно определенной квадратичной формой своих обобщенных координат.

В математике существует критерий Сильвестра , дающий необходимые и достаточные условия положительной определенности квадратичных форм: квадратичная форма (5.3) будет положительно определенной, если определитель, составленный из ее коэффициентов, и все его главные диагональные миноры будут положительными, т.е. если коэффициенты c ij будут удовлетворять условиям

D 1 = c 11 > 0,

D 2 =
> 0 ,

D s =
> 0,

В частности, для линейной системы с двумя степенями свободы потенциальная энергия и условия критерия Сильвестра будут иметь вид

П = (),

Аналогичным образом можно провести исследование положений относительного равновесия, если вместо потенциальной энергии ввести в рассмотрение потенциальную энергию приведенной системы [ 4 ].

Равновесием механической системы называют такое ее состояние, при котором все точки рассматриваемой системы покоятся по отношению к выбранной системе отсчета.

Проще всего выяснить условия равновесия на примере простейшей механической системы - материальной точки. Согласно первому закону динамики (см. Механика), условием покоя (или равномерного прямолинейного движения) материальной точки в инерциальной системе координат является равенство нулю векторной суммы всех приложенных к ней сил.

При переходе к более сложным механическим системам одного этого условия для их равновесия оказывается недостаточно. Кроме поступательного движения, к которому приводят нескомпенсированные внешние силы, сложная механическая система может совершать вращательное движение или деформироваться. Выясним условия равновесия абсолютно твердого тела - механической системы, состоящей из собрания частиц, взаимные расстояния между которыми не изменяются.

Возможность поступательного движения (с ускорением) механической системы можно устранить так же, как и в случае с материальной точкой, потребовав равенства нулю суммы сил, приложенных ко всем точкам системы. Это и есть первое условие равновесия механической системы.

В нашем случае твердое тело деформироваться не может, поскольку мы условились, что взаимные расстояния между его точками не изменяются. Но в отличие от материальной точки к абсолютно твердому телу можно приложить пару равных и противоположно направленных сил в разных его точках. При этом поскольку сумма этих двух сил равна нулю, то рассматриваемая механическая система поступательного движения совершать не будет. Однако очевидно, что под действием такой пары сил тело начнет вращаться относительно некоторой оси со всевозрастающей угловой скоростью.

Возникновение в рассматриваемой системе вращательного движения обусловлено наличием нескомпенсированных моментов сил. Моментом силы относительно какой-либо оси называется произведение величины этой силы F на плечо d, т. е. на длину перпендикуляра, опущенного из точки О (см. рис.), через которую проходит ось, на направление силы. Отметим, что момент силы при таком определении - алгебраическая величина: он считается положительным, если сила приводит к вращению против часовой стрелки, и отрицательным - в противном случае. Таким образом, второе условие равновесия твердого тела заключается в требовании равенства нулю суммы моментов всех сил относительно любой оси вращения.

В случае, когда оба найденных условия равновесия выполнены, твердое тело будет пребывать в состоянии покоя, если в момент начала действия сил скорости всех его точек были равны нулю.

В противном случае оно будет совершать равномерное движение по инерции.

Рассмотренное определение равновесия механической системы ничего не говорит о том, что произойдет, если система чуть-чуть выйдет из положения равновесия. При этом имеется три возможности: система вернется в свое прежнее состояние равновесия; система, несмотря на отклонение, не изменит своего состояния равновесия; система выйдет из состояния равновесия. Первый случай называют устойчивым состоянием равновесия, второй - безразличным, третий - неустойчивым. Характер положения равновесия определяется зависимостью потенциальной энергии системы от координат. На рисунке показаны все три типа равновесия на примере тяжелого шарика, находящегося в углублении (устойчивое равновесие), на гладком горизонтальном столе (безразличное), на вершине бугорка (неустойчивое) (см. рис. на с. 220).

Изложенный выше подход к проблеме равновесия механической системы рссматривался учеными еще в древнем мире. Так, закон равновесия рычага (т. е. твердого тела с закрепленной осью вращения) был найден Архимедом в III в. до н. э.

В 1717 г. Иоганн Бернулли разработал совершенно иной подход к нахождению условий равновесия механической системы - метод виртуальных перемещений. В основе его лежит вытекающее из закона сохранения энергии свойство сил реакций связей: при малом отклонении системы от положения равновесия полная работа сил реакций связей равна нулю.

При решении задач статики (см. Механика) на основании описанных выше условий равновесия существующие в системе связи (опоры, нити, стержни) характеризуются возникающими в них силами реакции. Необходимость учета этих сил при определении условий равновесия в случае систем, состоящих из нескольких тел, приводит к громоздким расчетам. Однако благодаря равенству нулю работы сил реакции связей при малых отклонениях от положения равновесия можно избежать рассмотрения этих сил вообще.

Кроме сил реакции на точки механической системы действуют и внешние силы. Какова их работа при малом отклонении от положения равновесия? Так как система первоначально покоится, то для любого ее перемещения необходимо совершить некоторую положительную работу. В принципе эту работу могут совершать как внешние силы, так и силы реакции связей. Но, как мы уже знаем, полная работа сил реакции равна нулю. Поэтому для того, чтобы система вышла из состояния равновесия, суммарная работа внешних сил при любом возможном перемещении должна быть положительной. Следовательно, условие невозможности движения, т. е. условие равновесия, можно сформулировать как требование неположительности полной работы внешних сил при любом возможном перемещении: .

Допустим, что при перемещениях точек системы сумма работ внешних сил оказалась равной . А что произойдет, если система совершит перемещения - Эти перемещения возможны так же, как и первые; однако работа внешних сил теперь изменит знак: . Рассуждая аналогично предыдущему случаю, мы придем к выводу, что теперь условие равновесия системы имеет вид: , т. е. работа внешних сил должна быть неотрицательной. Единственная возможность «примирить» два этих почти противоречивых условия - потребовать точного равенства нулю полной работы внешних сил при любом возможном (виртуальном) перемещении системы из положения равновесия: . Под возможным (виртуальным) перемещением тут подразумевается бесконечно малое мысленное перемещение системы, которое не противоречит наложенным на нее связям.

Итак, условие равновесия механической системы в виде принципа виртуальных перемещений формулируется следующим образом:

«Для равновесия любой механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ действующих на систему сил при любом возможном перемещении была равна нулю».

С помощью принципа виртуальных перемещений решаются задачи не только статики, но и гидростатики, и электростатики.


← Вернуться

×
Вступай в сообщество «lenew.ru»!
ВКонтакте:
Я уже подписан на сообщество «lenew.ru»