Молекулярная люминесценция. Законы флуоресценции. Люминесценция, виды люминесценции

Подписаться
Вступай в сообщество «lenew.ru»!
ВКонтакте:
ЛЮМИНЕСЦЕНЦИЯ (от лат. lumen, род. падеж luminis -свет и -escent - суффикс, означающий слабое действие), свечение в-ва, возникающее после поглощения им энергии возбуждения. Представляет собой избыток над тепловым излучением , испускаемым в-вом при данной т-ре за счет его внутренней (тепловой) энергии. В отличие от др. видов свечения (напр., рассеяния света, тормозного излучения) люминесценция характеризуется временем свечения, значительно превышающим период колебаний световой волны и составляющим от 10 -12 с до неск. суток. Понятие люминесценции применимо только к такому в-ву (совокупности частиц), состояние к-рого не слишком отличается от термодинамически равновесного, иначе различие между люминесценцией и тепловым излучением теряет смысл. Механизм люминесценции заключается в образовании под действием энергии от внеш. или внутр. источника возбужденных состояний атомов , молекул , кристаллов и послед. испускании ими квантов света (фотонов). По типу возбуждения выделяют фотолюминесценцию (источник энергии возбуждения - свет), радиолюминесценцию (радиоактивное излучение), рентгенолюминесценцию (рентгеновское излучение), электролюминесценцию (электрич. поле), катодолюминесценцию (пучок электронов), триболюминесценцию (мех. воздействие), хемилюминесценцию (хим. р-ции) и др. Различают молекулярную люминесценцию, при к-рой молекулы или атомы испускают фотоны при переходе из возбужденного состояния в основное квантовое состояние , и рекомбинационную люминесценцию, когда под действием энергии возбуждения образуются носители заряда (электроны и дырки в кристаллофосфорах) или ионы и радикалы (в газах , жидкостях , стеклах), послед. рекомбинация к-рых сопровождается испусканием фотонов. Излучат. переход из возбужденного состояния в основное происходит самопроизвольно (спонтанная люминесценция) или под действием внеш. электромагн. излучения (вынужденная люминесценция). Испускание света может происходить не обязательно теми же молекулами , к-рые возбуждаются при поглощении энергии, но и другими, если происходит безызлучат. передача энергии возбуждения (сенсибилизированная люминесценция). Люминесценция характеризуют спектром испускания (фотолюминесценцию - также спектром возбуждения), квантовым выходом , поляризацией , кинетикой затухания. В данной статье рассматривается мол. фотолюминесценция, к-рую широко применяют в технике и аналит. химии (см. Люминофоры , Люминесцентный анализ), фотохимии и хим. кинетике для изучения св-в возбужденных состояний частиц и очень быстрых хим. р-ций, в фотобиологии, биохимии и медицине для изучения св-в биол . объектов и механизма биол . процессов. О др. видах люминесценции см. Кристаллофосфоры , Рентгеновская спектроскопия , Хемилюминесценция.
Механизм люминесценции. Молекулярную фотолюминесценцию подразделяют на флуоресценцию и фосфоресценцию . Флуоресценция характеризуется малой длительностью (менее 10 -6 с) и обусловлена испусканием фотонов при переходе системы из возбужденного состояния той же мультиплетности , что и основное состояние. Фосфоресценция -длит. свечение (от долей до неск. десятков с), к-рое возникает при переходе в осн. состояние из возбужденного состояния иной мультиплетности ; такой переход происходит с нарушением спинового правила отбора (см. ). Для большинства орг. молекул с четным числом электронов осн. состояние является синглетным, а низшие возбужденные состояния имеют мультиплетность 1 и 3, т. е. могут быть синглетными и триплетными. Для таких молекул флуоресценция представляет собой излучат. переход в осн. состояние S 0 из возбужденного синглетного состояния S 1 (переход 2 на рис. 1).

j L = j i k E t i .

Как правило, для возбужденных синглетных состояний j i = 1, для триплетных состояний j i [ 1. Если j i не зависит от частоты возбуждающего света, выполняется закон Вавилова, согласно к-рому квантовый выход люминесценции постоянен в данной области частот возбуждающего света. Отклонения от закона Вавилова возникают, если при возбуждении в высшие электронные состояния появляются новые пути дезактивации возбужденных молекул , конкурирующие с внутр. конверсией в ниж. возбужденное состояние . Константу k E можно вычислить из величины момента квантового перехода M 21 = < Y 2 | m | Y 1) между двумя электронно-колебательными (вибронными) состояниями, описываемыми волновыми ф-циями Y 2 и Y 1 (m - оператор дипольного момента):

(с - скорость света, п - показатель преломления в-ва, n - частота перехода). Экспериментально значения k E в случае флуоресценции определяют из интеграла длинноволновой полосы спектра поглощения:

где N A - постоянная Авогадро , - волновое число (см - 1). e () - молярный десятичный коэф. поглощения (в дм 3 . моль - 1 . см - 1), <> - среднее значение в спектре флуоресценции :
где F() - зависимость числа испускаемых фотонов от волнового числа. Для многоатомных молекул с типичной полушириной полосы поглощения порядка неск. тыс. см - 1 справедливо приближенное выражение:

k Е ~ 10 4 e макс

(e макс - молярный десятичный коэф. поглощения в максимуме полосы).
Кинетика люминесценции. В простых системах мол. люминесценция после возбуждения коротким (по сравнению с t i) импульсом света затухает обычно по экспоненц. закону: I(t) = I 0 ехр(-t/ t i), где I 0 -начальная интенсивность излучения, t - текущее время. Величина, обратная t i , равна сумме констант скорости k j всех излучат. и безызлучат. (включая хим. р-ции) процессов гибели данного возбужденного состояния : 1/ t i = S j k j . Для мн. жестких молекул (ароматич. углеводороды , гетeроциклич. соед. и нек-рые их производные) t i определяется гл. обр. константой скорости k ISC интеркомбинац. конверсии из состояния S 1 в одно из триплетных состояний с меньшей энергией. Величина k ISC , в свою очередь, зависит от симметрии электронных волновых ф-ций обоих состояний. Так, для перехода между состояниями одинаковой природы [напр., 1 (p, p *) и 3 (p, p *)] k ISC имеет величину порядка 10 7 -10 8 с - 1 , а для состояний разл. природы [напр., 1 (p, p *) и 3 (n, p *)или 1 (n, p *) и 3 (p, p *)] она составляет 10 10 -10 11 с - 1 . В результате молекулы , у к-рых, напр., состояние S 1 имеет 1 (n, p *) природу, а состояние T 1 3 (p , p *) характеризуется меньшей энергией, практически не флуоресцируют, но обладают большим квантовым выходом образования возбужденных триплетных состояний и фосфоресцируют в твердой фазе. У нежестких молекул часто наблюдаются процессы внутр. конверсии , приводящие к релаксации энергии электронного возбуждения и отсутствию как флуоресценции , так и фосфоресценции . В твердых р-рах время жизни молекулы в триплетом состоянии определяется гл. обр. константами скорости излучат. интеркомбинац. перехода T 1 : S 0 и безызлучат. электронно-колебат. переноса энергии на сравнительно высокочастотные колебания связей С-Н, О-Н и т. п. в этой же молекуле или в молекуле р-рителя. Поэтому квантовый выход фосфоресценции j I лишь в неск. раз меньше квантового выхода j I образования триплетных состояний: j P [ j I = k ISC t S , где t S - время жизни состояния S 1 . В дейтерированных р-рителях перенос энергии сильно замедляется и j I приближается к обратной величине константы скорости излучат. интеркомбинац. перехода 1/k P (и может достигать 10 2 с), а квантовый выход фосфоресценции возрастает. В жидких р-рах наблюдается эффективное тушение триплетных возбужденных состояний примесями (в т. ч. растворенным

|
люминесценция в медицине, что такое люминесценция
Люминесце́нция (от лат. lumen, род. падеж luminis - свет и -escent - суффикс, означающий слабое действие) - нетепловое свечение вещества, происходящее после поглощения им энергии возбуждения. Впервые люминесценция была описана в XVIII веке.

Первоначально явление люминесценции использовалось при изготовлении светящихся красок и световых составов на основе так называемых фосфóров, для нанесения на шкалы приборов, предназначенных для использования в темноте. Особого внимания в СССР люминесценция не привлекала вплоть до 1948 года, когда советский учёный С. И. Вавилов на сессии Верховного совета предложил начать изготовление экономичных люминесцентных ламп и использовать люминесценцию в анализе химических веществ. быту явление люминесценции используется чаще всего в люминесцентных лампах «дневного света» и электронно-лучевых трубках кинескопов. На использовании явления люминесценции основано явление усиления света, экспериментально подтверждённое работами В. А. Фабриканта и лежащее в основе научно-технического направления квантовой электроники, конкретно находящее своё применение в усилителях света и генераторах стимулированного излучения (лазерах).

  • 1 Общая характеристика
  • 2 Типы люминесценции
  • 3 Спектры люминесценции
    • 3.1 Принцип Франка - Кондона
    • 3.2 Правило Стокса - Ломмеля
    • 3.3 Правило Каши
    • 3.4 Правило зеркальной симметрии Левшина
  • 4 Выход люминесценции
  • 5 Тушение люминесценции
  • 6 См. также
  • 7 Литература
  • 8 Ссылки
  • 9 Примечания

Общая характеристика

«Будем называть люминесценцией избыток над температурным излучением тела в том случае, если это избыточное излучение обладает конечной длительностью примерно 10−10 секунд и больше». Таково каноническое определение люминесценции, данное русским учёным С. И. Вавиловым в 1948 году. Это значит, что яркость люминесцирующего объекта в спектральном диапазоне волн его излучения существенно больше, чем яркость абсолютно чёрного тела в этом же спектральном диапазоне, имеющего ту же температуру, что и люминесцирующее тело.

Первая часть определения позволяет отличить люминесценцию от теплового излучения, что особенно важно при высоких температурах, когда термоизлучение приобретает большую интенсивность. Важной особенностью люминесценции является то, что она способна проявляться при значительно более низких температурах, так как не использует тепловую энергию излучающей системы. За это люминесценцию часто называют «холодным свечением». Критерий длительности, введённый Вавиловым, позволяет отделить люминесценцию от других видов нетеплового излучения: рассеяния и отражения света, комбинационного рассеяния, излучения Черенкова. Длительность их меньше периода колебания световой волны (то есть <10−10 c).

Физическая природа люминесценции состоит в излучательных переходах электронов атомов или молекул из возбуждённого состояния в основное. При этом причиной первоначального их возбуждения могут служить различные факторы: внешнее излучение, температура, химические реакции и др.

Вещества, имеющие делокализованные электроны (сопряжённые системы), обладают самой сильной люминесценцией. Антрацен, нафталин, белки, содержащие ароматические аминокислоты и некоторые простетические группы, многие пигменты растений и в частности хлорофилл, а также ряд лекарственных препаратов обладают ярко выраженной способностью к люминесценции. Органические вещества, способные давать люминесцирующие комплексы со слабо люминесцентными неорганическими соединениями, часто используются в люминесцентном анализе. Так, в люминесцентной титриметрии часто применяется вещество флуоресцеин.

Первоначально понятие люминесценция относилось только к видимому свету. настоящее время оно применяется к излучению в инфракрасном, видимом, ультрафиолетовом и рентгеновском диапазонах (см. шкала электромагнитных волн).

Многие формы природной люминесценции были известны людям очень давно. Например, свечение насекомых (светлячки), свечение морских рыб и планктона, полярные сияния, свечение минералов, гниющего дерева и других разлагающихся органических веществ. настоящее время к природным формам прибавилось много искусственных способов возбуждения люминесценции. Твёрдые и жидкие вещества, способные люминесцировать, называют люминофорами (от лат. lumen - свет и др.-греч. phoros - несущий).

Чтобы вещество было способно люминесцировать, его спектры должны иметь дискретный характер, то есть его энергетические уровни должны быть разделены зонами запрещённых энергий. Поэтому металлы в твёрдом и жидком состоянии, обладающие непрерывным энергетическим спектром, не дают люминесценции. Энергия возбуждения в металлах непрерывным образом переходит в тепло. И лишь в коротковолновом диапазоне металлы могут испытывать рентгеновскую флуоресценцию, то есть под действием рентгеновского излучения испускать вторичные Х-лучи.

Типы люминесценции

Фотолюминесценция минералов под действием ультрафиолетового света

Люминесцентное свечение тел принято делить на следующие виды:

  • Фотолюминесценция - свечение под действием света (видимого и УФ-диапазона). Она, в свою очередь, делится на
    • флуоресценцию (время жизни 10−9−10−6 с);
    • фосфоресценцию (10−3−10 с);
  • Хемилюминесценция - свечение, использующее энергию химических реакций;
  • Катодолюминесценция - вызвана облучением быстрыми электронами (катодными лучами);
  • Сонолюминесценция - люминесценция, вызванная звуком высокой частоты;
  • Радиолюминесценция - при возбуждении вещества ионизирующим излучением;
  • Триболюминесценция - люминесценция, возникающая при растирании, раздавливании или раскалывании люминофоров. Триболюминесценция вызывается электрическим разрядами, происходящими между образовавшимися наэлектризованными частями - свет разряда вызывает фотолюминесценцию люминофора.
  • Биолюминесценция - способность живых организмов светиться, достигаемая самостоятельно или с помощью симбионтов.
  • Электролюминесценция- возникает при пропускании электрического тока через определённые типы люминофоров.
  • Кандолюминесценция - калильное свечение.
  • Термолюминесценция - люминесцентное свечение, возникающее в процессе нагревания вещества. научной литературе часто используется термин Термостимулированная люминесценция, сокращенно ТСЛ, что одно и то же.

В настоящее время наиболее изучена фотолюминесценция.

У твёрдых тел различают три вида люминесценции:

  • мономолекулярная люминесценция - акты возбуждения и испускания света происходят в пределах одного атома или молекулы;
  • метастабильная люминесценция - акты возбуждения и испускания света происходят в пределах одного атома или молекулы, но с участием метастабильного состояния;
  • рекомбинационная люминесценция - акты возбуждения и испускания света происходят в разных местах.

Спектры люминесценции

Спектром люминесценции называют зависимость интенсивности люминесцентного излучения от длины волны испускаемого света. Наиболее простые - атомные спектры, в которых указанная выше зависимость определяется только электронным строением атома. Спектры молекул гораздо более сложные вследствие того, что в молекуле реализуются различные деформационные и валентные колебания. При охлаждении до сверхнизких температур сплошные спектры люминесценции органических соединений, растворенных в определённом растворителе, превращаются в квазилинейчатые. Это явление получило название эффекта Шпольского. Это ведёт к снижению предела обнаружения и повышению избирательности определений, расширению числа элементов, которые можно определять люминесцентным методом анализа.

Принцип Франка - Кондона

Часть электронной энергии при поглощении и испускании света должна расходоваться на увеличение колебаний структуры, превращаться в тепло. Явление наблюдается в результате резкого изменения градиента электронной энергии около ядер при возбуждении и релаксации.

Правило Стокса - Ломмеля

Спектр люминесценции, как правило, сдвинут относительно спектра поглощения в сторону длинных волн. Данное правило принято объяснять потерей некоторой части поглощённой энергии на тепловое движение молекул. Существует, однако, антистоксовский люминофор, излучающий более коротковолновое излучение, чем падающее. Как правило, одно и то же вещество способно испускать излучение как в стоксовой, так и в антистоксовой областях спектра относительно частоты возбуждающего люминесценцию излучения.

Правило Каши

Основная статья: Правило Каши

Независимо от способа возбуждения и длины волны возбуждающего света спектр люминесценции остаётся неизменным при данной температуре. Поскольку испускание квантов люминесценции всегда происходит с низшего электронно-возбуждённого уровня молекулы, то спектр люминесценции всегда будет одним и тем же независимо от того, на какой энергетический уровень попал электрон в результате поглощения фотона. Данное правило справедливо только в случае использования одной и той же возбуждаемой среды, системы регистрации излучения люминесценции. Множество разрешённых энергетических уровней в атоме/молекуле, а также множество длин волн источников возбуждения люминесценции позволяет для используемой среды получать множество спектров люминесценции в разных областях спектра, не повторяющих друг друга.

Правило зеркальной симметрии Левшина

Спектральные линии испускания и поглощения в координатах частоты являются взаимным зеркальным отражением. Положение оси симметрии показывает энергию чисто электронного перехода. Данным свойством обладают в основном жидкие люминофоры; исследования последних лет показали, что оно может быть справедливо и для сред в иных агрегатных состояниях.

Выход люминесценции

Выход - одна из важнейших характеристик люминесценции. Выделяют квантовый выход и энергетический выход. Под квантовым выходом понимают величину, показывающую отношение среднего числа излучённых квантов к числу поглощённых:

  • - число излучённых квантов,
  • - число поглощённых квантов.

Вавиловым было показано, что квантовый выход в растворах не зависит от длины волны возбуждающего света. Это связано с огромной скоростью колебательной релаксации, в ходе которой возбуждённая молекула передаёт избыток энергии молекулам растворителя.

Энергетический выход - отношение энергии излучённых квантов к энергии поглощённых:

где - частота излучения. Энергетический выход с ростом длины волны возбуждающего света сначала растёт пропорционально длине волны возбуждающего её света, затем остаётся постоянным и после некоторой граничной длины волны резко падает вниз (закон Вавилова).

Тушение люминесценции

Отличие выхода люминесценции от единицы обусловлено т. н. процессами тушения. Различают концентрационное, внутреннее, температурное, внешнее статическое и динамическое тушение.

Внутреннее тушение обусловлено безызлучательными переходами внутренней конверсии и колебательной релаксации. Наиболее ярко оно проявляется в симметричных структурах с большим числом сопряжённых связей, конформационно нежёстких структурах.

Температурное тушение является разновидностью внутреннего. Под влиянием температуры способность молекулы деформироваться растёт, и, как следствие, растёт вероятность безызлучательных переходов.

Внешнее статическое тушение основано на взаимодействии люминесцирующего соединения с другой молекулой и образованием неизлучающего продукта.

Динамическое тушение наблюдается, когда возбуждённая молекула люминофора вступает в постороннюю реакцию и теряет свои свойства.

Концентрационное тушение - результат поглощения молекулами вещества собственного излучения.

См. также

  • Флуоресценция
  • Фосфоресценция
  • Биолюминесценция
  • Хемилюминесценция
  • Сонолюминесценция
  • Электрофосфоресценция
  • Люминоскоп
  • Термолюминесценция

Литература

  • Шпольский Е. В. Атомная физика (в 2-х тт.). - М.: Наука, 1984.
  • Ландсберг Г. С. Оптика. - 6-е изд., стереот. - М.: ФИЗМАТЛИТ, 2003. - 647 с.
  • Лакович Дж. Основы флуоресцентной спектроскопии. - М.: Мир, 1986. - 496 с.
  • Harvey D. Modern Analytical Chemistry. - Boston, 2000. - 798 p.
  • Столяров К. П., Григорьев Н. Н. Введение в люминесцентный анализ неорганических веществ. - Л., 1967. - 364 с.
  • Захаров И. А., Тимофеев В. Н. Люминесцентные методы анализа. - Л., 1978. - 95 с.

Ссылки

  • Luminosity on Scienceworld

Примечания

  1. Ландсберг Г. С. Оптика. - 6-е изд., стереот. - М.: ФИЗМАТЛИТ, 2003. - 848 с.

люминесценция, люминесценция в медицине, что такое люминесценция, шеелит люминесценция

Люминесценция Информацию О

1. Люминесценция, виды люминесценции.

2. Механизмы фотолюминесценции.

3. Cпектры возбуждения и люминесценции. Правило Стокса.

4. Хемилюминесценция.

5. Использование люминесценции в биологии и медицине.

6. Основные понятия и формулы.

29.1. Люминесценция, виды люминесценции

Люминесценцией называют свечение тел, которое не может быть объяснено их тепловым излучением. Так, например, в видимой области спектра тепловое излучение становится заметным только при температуре ~10 3 -10 4 К, а люминесцировать тело может при любой температуре. Поэтому люминесценцию часто называют холодным свечением. Одной из причин, вызывающих люминесценцию, является внешнее излучение, которое возбуждает молекулы тела. Например, падающий свет. После прекращения процесса облучения люминесцентное свечение не прекращается тотчас же, а продолжается еще некоторое время. Это последействие отличает люминесценцию от таких явлений, как отражение и рассеяние света. В настоящее время в физике принято следующее определение люминесценции.

Люминесценция - излучение, представляющее собой избыток над тепловым излучением тела и продолжающееся в течение времени, значительно превышающего период световых колебаний (10 15 с).

Вещества, способные превращать поглощаемую ими энергию в люминесцентное свечение, называют люминофорами.

Люминесценция - результат квантовых переходов в возбужденных атомах, молекулах, кристаллах. По виду возбуждения различают следующие типы люминесценции:

фотолюминесценция - возникает при возбуждении атомов светом (ультрафиолетовые лучи и коротковолновая часть видимого света);

рентгенолюминесценция - возникает при возбуждении атомов рентгеновским и γ -излучением (экраны рентгеновских аппаратов, индикаторы радиации);

катодолюминесценция - возникает при возбуждении атомов электронами (кинескопы, экраны осциллографов, мониторов);

радиолюминесценция - возникает при возбуждении атомов продуктами радиоактивного распада;

электролюминесценция - возникает при возбуждении атомов под действием электрического поля (возбуждение молекул газа электрическим разрядом - газоразрядные лампы);

хемилюминесценция - возникает при возбуждении молекул в процессе химических реакций;

биолюминесценция - возникает в биологических объектах в результате определенных биохимических реакций;

сонолюминесценция - возникает под действием ультразвука.

Как уже отмечалось выше, люминесценция продолжается и после прекращения внешнего возбуждения люминофора. По длительности остаточного свечения различают флуоресценцию и фосфоресценцию:

флуоресценция - кратковременное остаточное свечение, длительность которого составляет 10 -9 -10 -8 с;

фосфоресценция - продолжительное остаточное свечение, длительность которого составляет 10 -4 -10 4 с.

29.2. Механизмы фотолюминесценции

Фотолюминесценция начинается с возбуждения атома или молекулы фотоном внешнего излучения с некоторой частотой ν. В результате атом переходит с основного энергетического уровня (1) на один из возбужденных уровней (2). Далее возможны три продолжения.

1. Атом (молекула) возвращается на основной уровень с испусканием фотона, частота которого равна частоте поглощенного фотона: v л = ν (рис. 29.1, а). Такая люминесценция называется резонансной.

Рис. 29.1. Виды люминесценции: резонансная (а), стоксова (б) и антистоксова (в)

2. Возбужденный атом взаимодействует с окружающими его атомами и безызлучательно переходит на нижний возбужденный уровень (2). Затем он переходит на основной уровень, испуская фотон меньшей частоты: ν л < ν (рис. 29.1, б). Такая люминесценция называется стоксовой (в честь Дж. Г. Стокса).

3. Возбужденный атом взаимодействует с окружающими его атомами и переходит на верхний возбужденный уровень Затем он переходит на основной уровень, испуская фотон большей частоты: ν л > ν (рис. 29.1, в). Такая люминесценция называется антистоксовой.

29.3. Спектры возбуждения и люминесценции. Правило Стокса

В процессе фотолюминесценции происходит преобразование поглощаемой световой энергии в энергию люминесцентного излучения. Поглощающая способность вещества характеризуется спектром поглощения (см. лекцию 28). Волны, при поглощении которых возникает люминесценция, образуют полосу возбуждения (рис. 29.2). Таких полос может быть несколько. Совокупность всех полос возбуждения образует спектр возбуждения.

Распределение интенсивности люминесцентного излучения по длинам испускаемых волн называется спектром люминесценции: I л = f(λ л). Исследования показали, что спектр люминесценции не меняется при изменении длины волны возбуждающего света в пределах полосы возбуждения.

Рис. 29.2. Независимость спектра люминесценции от длины волны возбуждающего света

Каждый люминофор характеризуется своими, только ему присущими спектрами люминесценции и поглощения.

На люминесцентное излучение тратится только часть энергии поглощаемого света. Поэтому для люминесценции выполняется правило (закон) Стокса:

Спектр люминесценции сдвинут в длинноволновую область относительно спектра поглощения того же соединения.

Правило Стокса используется в осветительной технике для преобразования ультрафиолетового излучения в видимый свет. Примером является ртутная лампа, в которой пары ртути, возбуждаемые электрическим разрядом, излучают ультрафиолет. На внутреннюю поверхность лампы нанесен слой люминофора с подходящим спектром люминесценции в видимой области. По сравнению с лампами накаливания такие лампы более экономичны.

29.4. Хемилюминесценция

Люминесценция, возникающая в химических реакциях, при которых происходит выделение энергии, называется хемилюминесценцией. При этом происходит превращение химической энергии в световую.

При хемилюминесценции свет испускается либо непосредственно продуктами реакции, либо другими компонентами, которым передается возбуждение. Яркость хемилюминесценции пропорциональна скорости реакции.

Хемилюминесценция, которая возникает в биологических объектах, называется биохемилюминесценцией. Биохемилюминесценция присуща самым разнообразным видам живых существ (всего около 250 видов).

Механизм биохемилюминесценции определяется реакциями окисления. Например, если поместить кусок светящейся гнилушки под колпак воздушного насоса и откачать воздух, то свечение прекратится. Если после этого под колпак подать воздух, то свечение возобновится. Было показано, что в биологических системах хемилюминесценция возникает при рекомбинации перекисных свободных радикалов липидов. Свечение при биохемилюминесценции бывает весьма интенсивным - известен случай, когда хирурги оперировали в полевых условиях по ночам при свете банок, наполненных тропическими светляками.

29.5. Использование люминесценции в биологии и медицине

Люминесцентный, качественный и количественный анализы

Люминесцентный анализ - совокупность методов для определения природы и состава вещества по спектру его люминесценции.

Качественный анализ - определение наличия (или отсутствия) каких-либо веществ (молекул) по форме спектра люминесценции. При этом можно изучать структуру молекул вещества; межмолекулярное взаимодействие; химические превращения.

Количественный анализ - определение количества вещества по интенсивности спектра люминесценции (можно обнаружить массу вещества m = 10 -10 г).

Если люминофором является растворенное вещество, то при невысокой оптической плотности раствора интенсивность люминесценции пропорциональна концентрации раствора. Поэтому по интенсивности люминесценции можно судить о концентрации раствора. Для этого интенсивность люминесценции исследуемого раствора (Ι χ) сравнивают с интенсивностью люминесценции раствора (I 0), концентрация которого известна. Неизвестную концентрацию С х находят по формуле

По методике исследования люминесцентный анализ можно представить следующей схемой.

Макроанализ - наблюдение невооруженным глазом люминесценции объектов, облученных УФ-излучением:

Проверка качества и сортировка пищевых продуктов.

Сортировка фармакологических средств.

Свечение волос, чешуек, ногтей при диагностике их поражения грибком и лишаем.

Микроанализ - исследование люминесцирующих микрообъектов при помощи специальных люминесцентных микроскопов, в которых есть специальный осветитель, содержащий ртутную лампу со светофильтром, пропускающим УФ-излучение.

Флуоресцентные зонды

В некоторых медицинских исследованиях применяются специальные люминофоры, вводимые в организм и распределяющиеся по тканям в соответствии со своими свойствами. Такие люминофоры получили название флуоресцентных зондов. Например, при введении раствора такого люминофора в кровь он разносится по всему организму и диффундирует в дерму и эпидермис. Люминесценция возбуждается длинноволновым ультрафиолетовым излучением и наблюдается в видимом свете. В поверхностных тканях с пониженным кровоснабжением люминесценция появляется позже, чем в тканях с нормальным кровоснабжением.

Флуоресцентные метки

Флуоресцирующие молекулы можно ковалентно связывать с определенными молекулами, и затем эту систему вводить в исследуемый объект. Такие молекулы называются флуоресцентными метками. Примером является использование флуоресцентно меченых антител. Если добавить такие антитела к суспензии смеси клеток, то они связываются только с теми из них, на поверхности которых

Главными параметрами люминесценции (флуоресценции) являются: спектр люминесценции, квантовый выход, время жизни молекулы в возбужденном состоянии, спектр возбуждения. Рассмотрим эти параметры.

Спектр флуоресценции - зависимость излучения от длинны волны.

Квантовый выход (j) - это отношение количества квантов, испускаемых с уровня S 1 к количеству поглощенных квантов:

j = n фл / n погл

Если бы все переходы вниз сопровождались излучением, то квантовый выход j =1. Но за счет потерь рекомбинации (процессов, конкурирующих с флуоресценцией: тепловые потери и т. д.) он меньше единицы.

Определить квантовый выход можно по методу Паркера-Рисса . В одинаковых условиях снимается спектр неизвестного вещества и эталона с известным квантовым выходом (j 0):

j = j 0 ´S´D 0 / D´S 0 ,

где D 0 , D- оптические плотности эталона и исследуемого вещества;

S 0 , S - площади под кривыми флуоресценции, соответственно.

В качестве эталона используют флуоресцин в растворе NaCl (0.1М).

Время жизни молекул в возбужденном состоянии (t) определяется суммарной вероятностью его дезактивации:

t =1/ (k фл + k вн.к + k ин.к),

где k фл - константа скорости флуоресценции;

k вн.к - константа скорости внутренней конверсии;

k ин.к - константа скорости интеркомбинационной конверсиии.

Спектром возбуждения флуоресценции называется зависимость интенсивности флуоресценции от длинны волны возбуждающего света:

I фл / I 0 = f(l в),

где I фл - интенсивность флуоресценции;

I 0 - интенсивность падающего (возбуждающего) света;

l в - длина волны возбуждающего света.

Измерение спектров возбуждения флуоресценции имеет важное значение для решения целого ряда задач. Так, спектр возбуждения дает возможность установить спектр поглощения компонента, который флуоресцирует в исследуемой спектральной области, что позволяет идентифицировать этот компонент. Сравнительное изучение спектров возбуждения и флуоресценции позволяет обнаружить миграцию энергии возбуждения между различными компонентами в сложных системах. Так, если в двухкомпонентных системах флуоресцирует только один компонент, а в спектре возбуждения этой флуоресценции зарегистрированы полосы, соответствующие поглощению обоих компонентов, это означает, что в данной системе происходит миграция энергии с одного компонента на другой.

Явление флуоресценции описывается рядом законов.

Закон Вавилона : так как испускание флуоресценции происходит всегда с нижнего возбужденного энергетического уровня (S 1), то квантовый выход не зависит от длины волны возбуждающего света.

Правило Каша : так как испускание флуоресценции происходит всегда с нижнего возбужденного энергетического уровня (S 1), то форма спектра флуоресценции не зависит от длины волны возбуждающего света.

Кроме того, спектр флуоресценции сдвинут в длинноволновую сторону по сравнению с полосами поглощения, так как энергия поглощенного кванта частично растрачивается на тепловые колебания. Это приводит к тому, что энергия флуоресценции меньше, чем энергия поглощения кванта света.

Закон Стокса : спектр флуоресценции будет расположен в более длинноволновой области, чем самый длинноволновый максимум в спектре поглощения.

← Вернуться

×
Вступай в сообщество «lenew.ru»!
ВКонтакте:
Я уже подписан на сообщество «lenew.ru»