Какие точки принадлежат плоскости а. Плоскость. Плоскость задается тремя произвольными точками, не принадле­жащими одной прямой. Главные линии плоскости

Подписаться
Вступай в сообщество «lenew.ru»!
ВКонтакте:

3. Плоскость

3.1. Способы задания плоскости на ортогональных чертежах

 Положение плоскости в пространстве определяется:

  • тремя точками, не лежащими на одной прямой;
  • прямой и точкой, взятой вне прямой;
  • двумя пересекающимися прямыми;
  • двумя параллельными прямыми;
  • плоской фигурой.

В соответствии с этим на эпюре плоскость может быть задана:

  • проекциями трёх точек, не лежащих на одной прямой (Рисунок 3.1,а);
  • проекциями точки и прямой (Рисунок 3.1,б);
  • проекциями двух пересекающихся прямых (Рисунок 3.1,в);
  • проекциями двух параллельных прямых (Рисунок 3.1,г);
  • плоской фигурой (Рисунок 3.1,д);
  • следами плоскости;
  • линией наибольшего ската плоскости.

Рисунок 3.1 - Способы задания плоскостей

Плоскость общего положения - это плоскость, которая не параллельна и не перпендикулярна ни одной из плоскостей проекций.
Следом плоскости называется прямая, полученная в результате пересечения заданной плоскости с одной из плоскостей проекций.


Плоскость общего положения может иметь три следа: горизонтальный απ1 , фронтальный απ2 и профильный απ3 , которые она образует при пересечении с известными плоскостями проекций: горизонтальной π1 , фронтальной π2 и профильной π3 (Рисунок 3.2).

Рисунок 3.2 - Следы плоскости общего положения

3.2. Плоскости частного положения

Плоскость частного положения - плоскость, перпендикулярная или параллельная плоскости проекций.

Плоскость, перпендикулярная плоскости проекций, называется проецирующей и на эту плоскость проекций она будет проецироваться в виде прямой линии.

Свойство проецирующей плоскости : все точки, линии, плоские фигуры, принадлежащие проецирующей плоскости, имеют проекции на наклонном следе плоскости
 (Рисунок 3.3). 

Рисунок 3.3 - Фронтально-проецирующая плоскость,
которой принадлежат: точки A, B, C , линии AC, AB, BC ,
плоскость треугольника АВС

Горизонтально-проецирующая плоскость - плоскость, перпендикулярная горизонтальной плоскос ти проекций (Рисунок 3.4, б).

Фронтально-проецирующая плоскость - плоскость, перпендикулярная фронтальной плоскости проекций (Рисунок 3.4, а).

Профильно-проецирующая плоскость - плоскость, перпендикулярная профильной плоскости проекций.

Плоскости, параллельные плоскостям проекций, называются плоскостями уровня или дважды проецирующими плоскостями .

Горизонтальная плоскость уровня - плоскость, параллельная горизонтальной плоскости проекций (Рисунок 3.4, г).

Фронтальная плоскость уровня - плоскость, параллельная фронтальной плоскости проекций (Рисунок 3.4, в).

Профильная плоскость уровня - плоскость, параллельная профильной плоскости проекций (Рисунок 3.4, д).


Рисунок 3.4 - Эпюры плоскостей частного положения

3.3. Точка и прямая в плоскости

Точка принадлежит плоскости, если она принадлежит какой-либо прямой, лежащей в этой плоскости  (Рисунок 3.5). 

Рисунок 3.5. Принадлежность точки плоскости

α = m // n
D n D ∈ α

Рисунок 3.6. Принадлежность прямой плоскости

α = m // n
D ∈ α
С ∈ α ⇒ СD ∈ α

Упражнение

 Дана плоскость, заданная четырехугольником (Рисунок 3.7, а). Необходимо достроить горизонтальную проекцию вершины С . 

 а б
Рисунок 3.7 - Условие (а) и решение (б) задачи


Решение :

  1. ABCD - плоский четырехугольник, задающий плоскость.
  2. Проведём в нём диагонали AC и BD (Рисунок 3.7, б), которые являются пересекающимися прямыми, также задающими ту же плоскость.
  3. Согласно признаку пересекающихся прямых, построим горизонтальную проекцию точки пересечения этих прямых K по её известной фронтальной проекции: A 2 C 2 ∩ B 2 D 2 =K 2 .
  4. Восстановим линию проекционной связи до пересечения с горизонтальной проекцией прямой BD : на проекции диагонали B 1 D 1 строим К 1 .
  5. Через А 1 К 1 проводим проекцию диагонали А 1 С 1 .
  6. Точку С 1 получаем, посредством линии проекционной связи до пересечения её с горизонтальной проекцией продолженной диагонали А 1 К 1 .

3.4. Главные линии плоскости


 В плоскости можно построить бесконечное множество прямых, но есть особые прямые, лежащие в плоскости, называемые главными линиями плоскости (Рисунок 3.8 - 3.11).

Прямой уровня или параллелью плоскости называется прямая, лежащая в данной плоскости и параллельная одной из плоскостей проекций.

Горизонталь или горизонтальная прямая уровня h (первая параллель ) - это прямая лежащая в данной плоскости и параллельная горизонтальной плоскости проекций (π1 ) (Рисунок 3.8, а; 3.9). 

Рисунок 3.8.а. Горизонтальная прямая уровня в плоскости, заданной треугольником

Фронталь или фронтальная прямая уровня f (вторая параллель ) - это прямая лежащая в данной плоскости и параллельная фронтальной плоскости проекций (π2 ) (Рисунок 3.8, б; 3.10).

 Рисунок 3.8.б. Фронтальная прямая уровня в плоскости, заданной треугольником

Профильная прямая уровня p (третья параллель ) - это прямая лежащая в данной плоскости и параллельная профильной плоскости проекций (π3 ) (Рисунок 3.8, в; 3.11).


 Рисунок 3.8 в - Профильная прямая уровня в плоскости, заданной треугольником 

Рисунок 3.9 - Горизонтальная прямая уровня в плоскости, заданной следами

Рисунок 3.10 - Фронтальная прямая уровня в плоскости, заданной следами

Рисунок 3.11 - Профильная прямая уровня в плоскости, заданной следами

3.5. Взаимное положение прямой и плоскости

Прямая по отношению к заданной плоскости может быть параллельной и может с ней иметь общую точку, то есть пересекаться.

3.5.1. Параллельность прямой плоскости

Признак параллельности прямой плоскости : прямая параллельна плоскости, если она параллельна любой прямой, принадлежащей этой  плоскости (Рисунок 3.19). 

Рисунок 3.19. Параллельность прямой плоскости

3.5.2. Пересечение прямой с плоскостью

Для построения линии пересечения прямой с плоскостью необходимо (Рисунок 3.20):

  1. Заключить прямую а во вспомогательную плоскость β (в качестве вспомогательной плоскости следует выбирать плоскости частного положения);
  2. Найти линию пересечения вспомогательной плоскости β с заданной плоскостью α;
  3. Найти точку пересечения заданной прямой a с линией пересечения плоскостей MN .

Рисунок 3.20. Построение точки встречи прямой с плоскостью

Упражнение

Заданы: прямая АВ общего положения, плоскость σ ⊥ π1 (Рисунок 3.21). Построить точку пересечения прямой АВ с плоскостью σ.

Решение :

  1. Плоскость σ - горизонтально-проецирующая, следовательно, горизонтальным следом σπ 1 (или σ 1 ) является прямая;
  2. Точка К должна принадлежать прямой АВ К 1 ∈ А 1 В 1 и заданной плоскости σ ⇒ К 1 ∈ σ 1 , следовательно, К 1 находится в точке пересечения проекций A 1 B 1 и σ 1 ;
  3. Фронтальную проекцию точки К находим посредством линии проекционной связи: K 2 ∈ A 2 B 2 .

Рисунок 3.21. Пересечение прямой общего положения с плоскостью частного положения

Упражнение

Заданы: плоскость σ = ΔАВС - общего положения, прямая EF (Рисунок 3.22).
Требуется построить точку пересечения прямой EF с плоскостью σ.

А                     б
Рисунок 3.22. Пересечение прямой с плоскостью (а - модель, б - чертеж)

Решение :

  1. Заключим прямую EF во вспомогательную плоскость, в качестве которой воспользуемся горизонтально-проецирующей плоскостью α (Рисунок 3.22, а);
  2. Если α ⊥ π 1 , то на плоскость проекций π 1 плоскость α проецируется в прямую (горизонтальный след плоскости απ 1 или α 1 ), совпадающую с E 1 F 1 ;
  3. Найдём прямую пересечения (1-2) проецирующей плоскости α с плоскостью σ (решение подобной задачи было рассмотрено ранее);
  4. Прямая (1-2) и заданная прямая EF лежат в одной плоскости α и пересекаются в точке K .

Алгоритм решения задачи (Рисунок 3.22, б):

3.6. Определение видимости методом конкурирующих точек

Рисунок 3.23. Метод конкурирующих точек

При оценке положения данной прямой, необходимо определить - точка какого участка прямой расположена ближе (дальше) к нам, как к наблюдателям, при взгляде на плоскость проекций π1 или π2 .

Точки, которые в пространстве принадлежат разным объектам, а на одной из плоскостей проекций их проекции совпадают (то есть, две точки проецируются в одну), называются конкурирующими на этой плоскости проекций .

Необходимо отдельно определить видимость на каждой плоскости проекций!

Видимость на π2

Выберем точки, конкурирующие на π2 - точки 3 и 4 (рисунок 3.23). Пусть точка 3 ∈ ВС ∈ σ, точка 4 ∈ EF .

Чтобы определить видимость точек на плоскости проекций π2 надо определить расположение этих точек на горизонтальной плоскости проекций при взгляде на π2 .

Направление взгляда на π2 показано стрелкой.

По горизонтальным проекциям точек 3 и 4, при взгляде на π2 , видно, что точка 41 располагается ближе к наблюдателю, чем 31 .

41 ∈ E 1 F 1 → 4 ∈ EF ⇒ на π2 будет видима точка 4, лежащая на прямой EF , следовательно, прямая EF на участке рассматриваемых конкурирующих точек расположена перед плоскостью σ и будет видима до точки K

Видимость на π1

Для определения видимости выберем точки, конкурирующие на π1 - точки 2 и 5.

Чтобы определить видимость точек на плоскости проекций π1 надо определить расположение этих точек на фронтальной плоскости проекций при взгляде на π1 .

Направление взгляда на π1 показано стрелкой.

По фронтальным проекциям точек 2 и 5, при взгляде на π1 , точка 22 располагается ближе к наблюдателю, чем 52 .

22 ∈ А 2 В 2 → 2 ∈ АВ ⇒ на π1 будет видима точка 2, лежащая на прямой АВ , следовательно, прямая EF на участке рассматриваемых конкурирующих точек расположена под плоскостью σ и будет невидима до точки K - пересечения прямой с плоскостью σ.

Видимой из двух конкурирующих точек будет та, у которой координата «Z » или(и) «Y » больше.


3.7. Перпендикулярность прямой плоскости

Признак перпендикулярности прямой плоскости : прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в данной плоскости.

Рисунок 3.24. Задание прямой, перпендикулярной плоскости

Если прямая перпендикулярна плоскости, то на эпюре: проекции прямой перпендикулярны наклонным проекциям горизонтали и фронтали, лежащих в плоскости, или следам плоскости (Рисунок 3.24).

  1. Пусть прямая p перпендикулярна плоскости σ = Δ АВС и проходит через точку K .
  2. Построим горизонталь и фронталь в плоскости σ = Δ АВС :
    A -1 ∈ σ; A -1 // π 1 ; С -2 ∈ σ; С -2 // π 2 .
  3. Восстановим из точки K перпендикуляр к заданной плоскости:
    p 1 ⊥ h 1 и p 2 ⊥ f 2 .

3.8. Взаимное положение двух плоскостей

Две плоскости могут быть параллельными и пересекающимися между собой.

3.8.1. Параллельность плоскостей

Признак параллельности двух плоскостей : две плоскости взаимно параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости.

Упражнение

Задана плоскость общего положения α = ΔАВС и точка F ∉ α (Рисунок 3.12).
Через точку F провести плоскость σ, параллельную плоскости α.

Рисунок 3.12. Построение плоскости, параллельной заданной

Решение :

  1. Через точку F проводим прямую m , параллельную, например, АВ .
  2. Через точку F , или же через любую точку, принадлежащую m , проводим прямую n , параллельную, например, ВС , причём m n .
  3. σ = m ∩n и σ // α по определению.
3.8.2. Пересечение плоскостей

  Результатом пересечения 2-х плоскостей является прямая. Любая прямая однозначно на плоскости или в пространстве может быть задана двумя точками. Поэтому для того, чтобы построить линию пересечения двух плоскостей, следует найти две точки, общие для обеих плоскостей, после чего соединить их.

Рассмотрим примеры пересечения двух плоскостей при различных способах их задания: следами; тремя точками, не лежащими на одной прямой; параллельными прямыми; пересекающимися прямыми и др.
 

Упражнение

Две плоскости α и β заданы следами (Рисунок 3.13). Построить линию пересечения плоскостей.

Рисунок 3.13. Пересечение плоскостей, заданных следами

Порядок построения линии пересечения плоскостей :

  1. Найти точку пересечения горизонтальных следов - это точка М (её проекции М 1 и М 2 , при этом М 1 = М , т.к. М - точка частного положения, принадлежащая плоскости π 1 ).
  2. Найти точку пересечения фронтальных следов - это точка N (её проекции N 1 и N 2 , при этом N 2 = N , т.к. N - точка частного положения, принадлежащая плоскости π 2 ).
  3. Построить линию пересечения плоскостей, соединив одноименные проекции полученных точек: М 1 N 1 и М 2 N 2 .
МN - линия пересечения плоскостей.

Упражнение

Задана плоскость α = ΔАВС , плоскость σ - горизонтально-проецирующая (σ ⊥ π1 ) ⇒ σ1 - горизонтальный след плоскости (Рисунок 3.14).
Построить линию пересечения этих плоскостей.

Решение :

Так как плоскость σ пересекает стороны АВ и АС треугольника АВС , то точки пересечения K и L этих сторон с плоскостью σ являются общими для обеих заданных плоскостей, что позволит, соединив их, найти искомую линию пересечения.

Точки могут быть найдены как точки пересечения прямых с проецирующей плоскостью: находим горизонтальные проекции точек K и L , то есть K 1 и L 1 на пересечении горизонтального следа (σ1 ) заданной плоскости σ с горизонтальными проекциями сторон ΔАВС : А 1 В 1 и A 1 C 1 . После чего посредством линий проекционной связи находим фронтальные проекции этих точек K 2 и L 2 на фронтальных проекциях прямых АВ и АС . Соединим одноимённые проекции: K 1 и L 1 ; K2 и L 2 . Линия пересечения заданных плоскостей построена.

Алгоритм решения задачи :

АВ ∩ σ = K А 1 В 1 ∩ σ1 = K 1 → K 2
АС ∩ σ = L A 1 C 1 ∩ σ1 = L 1 → L 2
KL - линия пересечения ΔАВС и σ (α ∩ σ = KL ).

Рисунок 3.14. Пересечение плоскостей общего и частного положения

Упражнение

Заданы плоскости α = m // n и плоскость β = ΔАВС (Рисунок 3.15).
Построить линию пересечения заданных плоскостей.

Решение :

  1. Чтобы найти точки, общие для обеих заданных плоскостей и задающие линию пересечения плоскостей α и β, необходимо воспользоваться вспомогательными плоскостями частного положения.
  2. В качестве таких плоскостей выберем две вспомогательные плоскости частного положения, например: σ // τ ; σ ⊥ π 2 ; τ ; ⊥ π 2 .
  3. Вновь введённые плоскости пересекаются с каждой из заданных плоскостей α и β по прямым, параллельным друг другу, так как σ // τ ;:
    - результатом пересечения плоскостей α, σ и τ ; являются прямые (4-5) и (6-7);
    - результатом пересечения плоскостей β, σ и τ ; являются прямые (3-2) и (1-8).
  4. Прямые (4-5) и (3-2) лежат в плоскости σ; точка их пересечения М одновременно лежит в плоскостях α и β, то есть на прямой пересечения этих плоскостей;


  5. Решение :

    1. Воспользуемся вспомогательными секущими плоскостями частного положения. Введём их так, чтобы сократить количество построений. Например, введём плоскость σ ⊥ π2 , заключив прямую а во вспомогательную плоскость σ (σ ∈ a ).
    2. Плоскость σ пересекает плоскость α по прямой (1-2), а σ ∩ β = а . Следовательно (1-2) ∩ а = K .
    3. Точка К принадлежит обеим плоскостям α и β.
    4. Следовательно, точка K , является одной из искомых точек, через которые проходит прямая пересечения заданных плоскостей α и β.
    5. Для нахождения второй точки, принадлежащей прямой пересечения α и β, заключим прямую b во вспомогательную плоскость τ ⊥π2 (τ b ).
    6. Соединив точки K и L , получим прямую пересечения плоскостей α и β.
    3.8.3. Взаимно перпендикулярные плоскости

    Плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой.

    Упражнение

    Задана плоскость σ ⊥ π2 и прямая общего положения - DE (Рисунок 3.17).
    Требуется построить через DE плоскость τ ⊥ σ.

    Решение :
    Проведем перпендикуляр CD к плоскости σ - C 2 D 2 ⊥ σ2 .

    Рисунок 3.17 - Построение плоскости, перпендикулярной к заданной плоскости

    По теореме о проецировании прямого угла C 1 D 1 должна быть параллельна оси проекций. Пересекающиеся прямые CD DE задают плоскость τ . Итак, τ ⊥ σ.
    Аналогичные рассуждения, в случае плоскости общего положения.

    Упражнение

    Задана плоскость α = ΔАВС и точка K вне плоскости α.
    Требуется построить плоскость β ⊥ α, проходящую через точку K .

    Алгоритм решения (Рисунок 3.18):

    1. Построим горизонталь h и фронталь f в заданной плоскости α = Δ АВС ;
    2. Через точку K проведём перпендикуляр b к плоскости α (по теореме о перпендикуляре к плоскости: если прямая перпендикулярна плоскости, то её проекции перпендикулярны к наклонным проекциям горизонтали и фронтали, лежащих в плоскости: b 2 ⊥ f 2 ; b 1 ⊥ h 1 );
    3. Задаем плоскость β любым способом, учитывая, например, β = a b , таким образом, плоскость, перпендикулярная к заданной, построена: α ⊥ β.

    Рисунок 3.18 - Построение плоскости, перпендикулярной к заданной ΔАВС

    Задачи для самостоятельной работы

    1. Задана плоскость α = m // n . Известно, что K ∈ α.
    Постройте фронтальную проекцию точки К .

Признаки принадлежности хорошо известны из курса планиметрии. Наша задача рассмотреть их применительно к проекциям геометрических объектов.

Точка принадлежит плоскости, если она принадлежит прямой, лежащей в этой плоскости.

Принадлежность прямой плоскости определяется по одному из двух признаков:

а) прямая проходит через две точки, лежащие в этой плоскости;

б) прямая проходит через точку и параллельна прямой, лежащим в этой плоскости.

Используя эти свойства, решим в качестве примера задачу. Пусть плоскость задана треугольником АВС . Требуется построить недостающую проекцию D 1 точки D , принадлежащей этой плоскости. Последовательность построений следующая (рис. 2.5).

Через точку D 2 проводим проекцию прямой d , лежащей в плоскости DАВС , пересекающую одну из сторон треугольника и точку А 2 . Тогда точка 1 2 принадлежит прямым А 2 D 2 и C 2 В 2 . Следовательно, можно получить ее горизонтальную проекцию 1 1 на C 1 В 1 по линии связи. Соединив точки 1 1 и А 1 , получаем горизонтальную проекцию d 1 . Ясно, что точка D 1 принадлежит ей и лежит на линии проекционной связи с точкой D 2 .

Достаточно просто решаются задачи на определение принадлежности точки или прямой плоскости. На рис. 2.6 показан ход решения таких задач. Для наглядности изложения задачи плоскость задаем треугольником.

Рис. 2.6. Задачи на определение принадлежности точки и прямой плоскости.

Для того, чтобы определить принадлежит ли точка Е плоскости DАВС , проведем через ее фронтальную проекцию Е 2 прямую а 2 . Считая, что прямая а принадлежит плоскости DАВС , построим ее горизонтальную проекцию а 1 по точкам пересечения 1 и 2. Как видим (рис. 2.6, а), прямая а 1 не проходит через точку Е 1 . Следовательно, точка Е ÏDАВС .

В задаче на принадлежность прямой в плоскости треугольника АВС (рис. 2.6, б), достаточно по одной из проекций прямой в 2 построить другую в 1 * считая, что вÌDАВС . Как видим, в 1 * и в 1 не совпадают. Следовательно, прямая в Ë DАВС .

Линии уровня в плоскости

Определение линий уровня было дано ранее. Линии уровня, принадлежащие данной плоскости, называются главными . Эти линии (прямые) играют существенную роль при решении ряда задач начертательной геометрии.

Рассмотрим построение линий уровня в плоскости, заданной треугольником (рис. 2.7).

Рис. 2.7. Построение главных линий плоскости, заданной треугольником

Горизонталь плоскости DАВС начинаем с вычерчивания ее фронтальной проекции h 2 , которая, как известно, параллельна оси ОХ . Поскольку эта горизонталь принадлежит данной плоскости, то она проходит через две точки плоскости DАВС , а именно, точки А и 1. Имея их фронтальные проекции А 2 и 1 2 , по линии связи получим горизонтальные проекции (А 1 уже есть) 1 1 . Соединив точки А 1 и 1 1 , имеем горизонтальную проекцию h 1 горизонтали плоскости DАВС . Профильная проекция h 3 горизонтали плоскости DАВС будет параллельна оси ОХ по определению.

Фронталь плоскости DАВС строится аналогично (рис. 2.7) с той лишь разницей, что ее вычерчивание начинается с горизонтальной проекции f 1 , так как известно, что она параллельна оси ОХ. Профильная проекция f 3 фронтали должна быть параллельна оси ОZ и пройти через проекции С 3 , 2 3 тех же точек С и 2.

Профильная линия плоскости DАВС имеет горизонтальную р 1 и фронтальную р 2 проекции, параллельные осям OY и OZ , а профильную проекцию р 3 можно получить по фронтальной, используя точки пересечения В и 3 с D АВС .

Одной из задач, для решения которых применяются линии уровня, является задача на построение проекций точки, принадлежащей плоскости. Пусть имеется фронтальная проекция D 2 точки D принадлежащей плоскости, заданной следами k X l (рис. 111, а). Требуется найти горизонтальную проекцию D 1 точки D.

Точка принадлежит плоскости, если она принадлежит прямой, принадлежащей плоскости. Решаем задачу с помощью горизонтали h плоскости k X l. Через точку D 2 проводим фронтальную проекцию h 2 этой горизонтали, которая, как известно, должна быть параллельна оси х 12 (Рис. 111 б). Она пересечет фронтальную проекцию k 2 фронтального следа k к точке N 2 ; проведя вертикальную линию связи, найдем на оси проекций х 12 горизонтальную проекцию фронтального следа N горизонтали (см. рис. 108).

TBegin-->TEnd-->

Горизонтальная проекция h 1 горизонтали должна быть параллельна l 1 , Горизонтальную проекцию D 1 точки D найдем на горизонтальной проекции h 1 горизонтали в точке пересечения ее с вертикальной линией связи, проведенной через точку D 2 .

Эту задачу можно было бы решить также с помощью фронтали. В этом случае пришлось бы через точку D 2 провести фронтальную проекцию f 2 ||k 2 . Советуем учащимся выполнить построение самим. Результат должен быть одинаковым с первым построением.

Несколько изменим условия задачи. Пусть будет задана горизонтальная проекция Е 1 точки Е и плоскость ABC, определенная проекциями треугольника (рис, 112, а), В этой задаче нельзя воспользоваться горизонталью плоскости, поскольку отсутствует фронтальная проекция точки Е. Применяем фронталь f; через точку E 1 проводим горизонтальную проекцию (х фронтали, находим ее фронтальную проекцию l2 и на ней точку Е 1 .

Точку в плоскости можно построить не только с помощью горизонтали и фронтали, но и с помощью прямой общего положения. В некоторых случаях это даже удобнее.

TBegin-->
TEnd-->

Построение прямой общего положения, принадлежащей плоскости общего положения, принципиально не отличается от построения горизонталей и фронталей, принадлежащих плоскости. Построение основано на положении, известном из геометрии: прямая принадлежит плоскости, если она имеет две общие точки с этой плоскостью. Таким образом, если мы пересечем одну из проекций плоскости произвольной прямой и используем две точки пересечения этой прямой с линиями, принадлежащими плоскости, для построения второй проекции линии, то мы сможем решить задачу. Для примера решим предыдущую задачу с помощью прямой общего положения (рис. 112, б). Через точку Е 1 проводим прямую D 1 F 1 любого наклона; находим фронтальную проекцию D 2 F 2 линии DF, используя точки пересечения D 1 и F 1 . На пересечении фронтальной проекции D 2 F 2 с вертикальной линией связи находим фронтальную проекцию Е 1 точки Е.

программа передач на сегодня : Animal Planet, Bloomberg, 3 канал, CNN, Ajara TV, Classic Sport, Amazing Life, AB Moteurs Luxe HD, Jetix, Jetix Play, Mezzo, HD Кино, Discovery Channel, MCM, MGM, HD Life, Discovery Science.

Принадлежность прямой плоскости :

2) прямая принадлежит плоскости, если она проходит через точку, принадлежащую данной плоскости и параллельна какой-нибудь прямой этой плоскости.

Из этих двух признаков принадлежности прямой плоскости можно сделать следующие выводы:

1) если плоскость задана следами, то прямая принадлежит плоскости, если следы прямой лежат на одноименных следах плоскости;

2) прямая принадлежит плоскости, если она с одним следом плоскости имеет общую точку, а другому следу параллельна.

Рассмотрим плоскость Q, общего положения, задана следами (рисунок 17). Прямая NM принадлежит этой плоскости, поскольку ее следы лежат на одноименных следах плоскостей.

На рисунке 18 показана плоскость, заданная пересекающимися прямыми t и n. Чтобы построить прямую, лежащую в этой плоскости, достаточно провести произвольно одну из проекций, например, горизонтальную c1, а затем спроецировать точки пересечения этой прямой с прямыми плоскости на фронтальную плоскость. Фронтальная проекция прямой c2 пройдет через полученные точки.

Рисунок 17 Рисунок 18

Согласно второму положению на рисунке 19 построена прямая h, принадлежащая плоскости Р, - она имеет точку N (N1, N2) общую с плоскостью Р и параллельна прямой, лежащей в плоскости - горизонтальному следу Р1.

Рисунок 19 Рисунок 20

Рассмотрим плоскости частного положения. Если прямая или фигура принадлежит горизонтально-проецирующей плоскости (рисунок 20), то горизонтальные проекции этих геометрических элементов совпадают с горизонтальным следом плоскости.

Если прямая или плоская фигура принадлежит фронтально-проецирующей плоскости, то фронтальные проекции этих геометрических элементов совпадают с фронтальным следом плоскости.

Принадлежность точки плоскости:

Точка принадлежит плоскости, если она принадлежит прямой, лежащей в этой плоскости.

Пример: Дана плоскость Р (a || b). Известна горизонтальная проекция точки В, принадлежащей плоскости Р. Найти фронтальную проекцию точки В (рисунок 21).

На рисунках 22, 23, 24 показано фрагментарно решение этой задачи:

1) проведем через В1 (известную проекцию точки В) любую прямую,

лежащую в плоскости Р, - для этого прямая должна иметь с плоскостью две общие точки. Отметим их на чертеже - М1 и K1;

2) построим фронтальные проекции этих точек по принадлежности точек прямым, т. е. М2 на прямой а, K2 на прямой b. Проведем через фронтальные проекции точек фронтальную проекцию прямой;

Рисунок 21 Рисунок 22

Определение. Прямая и плоскость называются параллельными, если они не имеют общих точек (а || )

Признак параллельности прямой и плоскости.

Теорема. Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости.

Выводы.

Случаи взаимного расположения прямой и плоскости:

А) прямая лежит в плоскости;
б) прямая и плоскость имеют только одну общую точку;
в) прямая и плоскость не имеют ни одной общей точки.

Случаи взаимного расположения плоскостей:

Свойства параллельных плоскостей:

Задачи и тесты по теме "Тема 3. "Параллельность прямой и плоскости; параллельность плоскостей"."

  • Параллельность плоскостей

    Уроков: 1 Заданий: 8 Тестов: 1

  • Параллельность прямых, прямой и плоскости - Параллельность прямых и плоскостей 10 класс
  • Признаки параллельности двух прямых. Аксиома параллельных прямых - Параллельные прямые 7 класс

    Уроков: 2 Заданий: 11 Тестов: 1

  • Взаимное расположение прямых в пространстве. Угол между прямыми - Параллельность прямых и плоскостей 10 класс

    Уроков: 1 Заданий: 9 Тестов: 1

  • Перпендикулярность прямой и плоскости - Перпендикулярность прямых и плоскостей 10 класс

    Уроков: 1 Заданий: 10 Тестов: 1

Тема "Аксиомы стереометрии" играет важную роль в развитии пространственных представлений, поэтому старайтесь привлекать больше моделей (картон и спицы), рисунков.

В теме "Параллельность в пространстве" даются знания о параллельности прямых и плоскостей в пространстве. В данном материале обобщаются известные из планиметрии сведения о параллельности прямых. На примере теоремы о существовании и единственности прямой, параллельной данной, Вы получаете представление о необходимости заново доказать известные из планиметрии факты в тех случаях, когда речь идет о точках и прямых пространства, а не о конкретной плоскости.

Задачи на доказательство решаются во многих случаях по аналогии с доказательством теорем. Для решения задач на вычисление длин отрезков необходимо провести повторение курса планиметрии: равенства и подобия треугольников, определений, свойств и признаков прямоугольника, параллелограмма, ромба, квадрата, трапеции.

← Вернуться

×
Вступай в сообщество «lenew.ru»!
ВКонтакте:
Я уже подписан на сообщество «lenew.ru»